Dear all,
   I have written the following code:

K.<x> = FunctionField(GF(2));
R.<y> = K[]
L.<y> = K.extension(y^2 +y+x+1/x)

print L.places(2)


p = L.places(2)[1]
print p


G=p.divisor()

LG=G.basis_function_space()
print LG


Output is as follows:

[Place (x^2 + x + 1, x*y + 1), Place (x^2 + x + 1, x*y + x + 1)]
Place (x^2 + x + 1, x*y + x + 1)
[1, (x/(x^2 + x + 1))*y + 1/(x^2 + x + 1)]


What is Place (x^2 + x + 1, x*y + 1)? Is it ideal generated by

(x^2 + x + 1, x*y + 1).


What is the value of $\frac{xy}{(x^2 + x + 1) } +

\frac{1}{x^2 + x + 1}+$ Place $(x^2 + x + 1, x y + 1)$?

It is an element of residue field which is isomorphic to

$\mathbb{F}_{2^2}$. Since $\mathbb{F}_{2^2}$ is isomorphic
to $\mathbb{F}^2_{2}$ as a vector space,

I want value in $\mathbb{F}^2_{2}$.

-- 
You received this message because you are subscribed to the Google Groups 
"sage-support" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-support+unsubscr...@googlegroups.com.
To post to this group, send email to sage-support@googlegroups.com.
Visit this group at https://groups.google.com/group/sage-support.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/sage-support/CAC3pSB%2BBS5hc-GgqKyRKQO9-0vc32mvxQAM3L8GtoSDWh5_txw%40mail.gmail.com.
For more options, visit https://groups.google.com/d/optout.

Reply via email to