The solution of a cubic or quartic may require the use of complex numbers. 
(Indeed that's how the complex numbers were first discovered.)
Below I exhibit a long expression for such a number that solve() found for 
me.
It evaluates using n(t) to a real (decimal) number,  and it passes " t in 
RR" 
although that takes five minutes and turns the fan of my laptop on (a sign 
of
serious CPU use).  Then I enter this number in range(0,t), which should be 
OK 
if t is real,  but it causes the same crash that range(0,I) causes, 
 complaining that 
t is complex.   Below is the code  (Sage version is 8.0--I plan to update 
Real Soon Now).
Well, so you may wonder "what is the actual question"?  It is,  how can I 
get my 
hands on this number in a form that I can actually put into range?   I want 
to bound 
a search by the size of the solution of a quartic and could not manage it 
because of 
this problem.



def test():
t =  -2/3*((sqrt(3)*sqrt((675*(88/30375*I*sqrt(79)*sqrt(3) + 
1328/3375)^(2/3) + 552*(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3) + 
364)/(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3)) - 
45*sqrt(-(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3) - 
704/225*sqrt(3)/sqrt((675*(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(2/3) + 
552*(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3) + 
364)/(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3)) - 
364/675/(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3) + 368/225) + 6)^2 - 
90*sqrt(3)*sqrt((675*(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(2/3) + 
552*(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3) + 
364)/(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3)) + 
4050*sqrt(-(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3) - 
704/225*sqrt(3)/sqrt((675*(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(2/3) + 
552*(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3) + 
364)/(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3)) - 
364/675/(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3) + 368/225) - 
4590)/((sqrt(3)*sqrt((675*(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(2/3) + 
552*(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3) + 
364)/(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3)) - 
45*sqrt(-(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3) - 
704/225*sqrt(3)/sqrt((675*(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(2/3) + 
552*(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3) + 
364)/(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3)) - 
364/675/(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3) + 368/225) + 
6)*(sqrt(1/3)*sqrt((675*(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(2/3) + 
552*(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3) + 
364)/(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3)) - 
15*sqrt(-(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3) - 
704/75*sqrt(1/3)/sqrt((675*(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(2/3) 
+ 552*(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3) + 
364)/(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3)) - 
364/675/(88/30375*I*sqrt(79)*sqrt(3) + 1328/3375)^(1/3) + 368/225) + 2)) + 
0.0100000000000000 
print(n(t))
print(t in RR)
print(range(0,t))

-- 
You received this message because you are subscribed to the Google Groups 
"sage-support" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-support+unsubscr...@googlegroups.com.
To post to this group, send email to sage-support@googlegroups.com.
Visit this group at https://groups.google.com/group/sage-support.
For more options, visit https://groups.google.com/d/optout.

Reply via email to