So.. is all of that just converting all the crazy square roots into rational numbers? Thanks for your help!
On Friday, September 22, 2017 at 6:40:45 AM UTC-5, Emmanuel Charpentier wrote: > what's wrong with : > > map(lambda S:map(lambda s:s.lhs()==s.rhs().n(), S), solve([eq1, eq2, eq3], > [x, y, z])) > > [[x == 0.0675142263037092, y == 0.00748577369629076, z == > 0.00748577369629076], > [x == 0.0833157736962908, y == -0.00831577369629076, z == > -0.00831577369629076]] > > Which shows that the first solution fulfills your constraints ? > > HTH, > > -- > Emmanuel Charpentier > > Le jeudi 21 septembre 2017 20:27:43 UTC+2, Natalie Ulrich a écrit : >> >> I'm using SageMathCell to solve chemical equilibrium problems, so at >> least one set of my solutions has to be real and positive. >> >> Here's my code: >> >> var('x, y, z') >> >> xi=0 >> >> yi=0.150/2.0 >> >> zi=0.150/2.0 >> >> K=8.3e-4 >> >> eq1=K == y*z/ x >> >> eq2=xi+yi==x+y >> >> eq3=2*xi+2*zi==2*x+2*z >> >> solve([eq1, eq2, eq3],[x, y, z]) >> >> >> >> And here are my solutions: >> >> [[x == -1/200000*sqrt(2496889) + 15083/200000, y == >> 1/200000*sqrt(2496889) - 83/200000, z == 1/200000*sqrt(2496889) - >> 83/200000], [x == 1/200000*sqrt(2496889) + 15083/200000, y == >> -1/200000*sqrt(2496889) - 83/200000, z == -1/200000*sqrt(2496889) - 83/ >> 200000]] >> ------------------------------ >> >> >> Any thoughts? Thanks in advance. >> >> -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To post to this group, send email to sage-support@googlegroups.com. Visit this group at https://groups.google.com/group/sage-support. For more options, visit https://groups.google.com/d/optout.