This is now Trac#22915 <https://trac.sagemath.org/ticket/22915>, which needs discussion.
-- Emmanuel Charpentier Le mercredi 26 avril 2017 08:35:30 UTC+2, Emmanuel Charpentier a écrit : > > Sage can (awkwardly) do some simplifications of symbolic sums. For example > > sage: var("j,p", domain="integer") > (j, p) > sage: X,Y=function("X,Y") > sage: (sum(X(j),j,1,p)+sum(Y(j),j,1,p)).maxima_methods().sumcontract() > sum(X(j) + Y(j), j, 1, p) > > but, to the best of my (limited) knowledge, the reverse operation, useful > in sime situations (trivial example : derive maximum likelihood estimators > of the parameters of some distributions) is not possible (in other words, > sum does not distribute over +). > > The needed function can be written in Sage : > > def expand_sum(ex): > ## Only way I found to denote the needed operator constants > def init_consts(): > a=function("a") > b,c,d=SR.var("b,c,d") > op_sum=sum(a(b),b,c,d).operator() > op_add=(c-b).operator() > return(op_sum,op_add) > ## Build a term of the result > def treat_term(term,loopargs): > L=copy(loopargs) ## Copy is needed, under penalty of side effects > !! > L.insert(0,term) > return(apply(sum,L)) > op_sum,op_add=init_consts() > if ex.parent() is not SR:return(ex) > op=ex.operator() > largs=ex.operands() > if op is None:return(ex) > if op is op_sum: > fa=largs[0] > op1=fa.operator() > if op1 is op_add: > ra=largs[1:] # index variable and bounds > return(sum(map(lambda t:treat_term(expand_sum(t),ra), > fa.operands()))) > ## Default case : recurse to ex arguments > return(apply(op, map(expand_sum, largs))) > > It can also be written in Maxima (or in lisp) and used via one of the > Maxima interfaces : > > expand_sum(ex):=block([sum_op,add_op,a,b,c,d], > sum_op:op(sum(a(b),b,c,d)), > add_op:op(c-b), > if atom(ex) > then ex > else block([op1:op(ex), largs:args(ex)], > if equal(op1,sum_op) > and not(atom(largs[1])) > and equal(op(args(ex)[1]), add_op) > then block([fa:first(largs), ra:rest(largs), lres,z], > lres:map(lambda([t],apply(sum,append([expand_sum(t)],ra))), > args(fa)), > lsum(z,z,lres)) > else apply(op1, map(expand_sum, largs)))); > > Both versions allow the needed expansion. In Sage : > > sage: load("/home/charpent/Feuilles Sage brutes/expand_sum.sage") > sage: expand_sum(sum(X(j)+Y(j),j,1,p)) > sum(X(j), j, 1, p) + sum(Y(j), j, 1, p) > > (the Maxima version also works (not shown)). Hence a few questions : > > 1. Did I oversee an existing way to do this ? > 2. Is that a worthwile addition to Sage ? > 3. Should it be implemented in Sage (probably as a method for SR), or > via Maxima (like other sum functions) ? > 4. Should this be a special case of the expand() method ? > 5. Are there possible improvements (I think so : for example, I have > been unable to find the "right" designation of the operators : op_sum > might be sage.functions.other.symbolic_sum, but I found nothing usable > for op_add, hence the ridiculous re-computation of these constants at > each call...). > > > Sincerely, > > -- > Emmanuel Charpentier > > -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To post to this group, send email to sage-support@googlegroups.com. Visit this group at https://groups.google.com/group/sage-support. For more options, visit https://groups.google.com/d/optout.