Hi, I am trying the following code on the following 3x3 matrix. But
the result is not very clear. Here A=a1+a2+a3.

sage: var('a1,a2,a3,A')
(a1, a2, a3, A)
sage: matrix(SR, 3, [1/a1, 0, -a1/a3^2, 0, 1/a2, -a2/a3^2,-1/A^2,
-1/A^2,-1/A^2 ])
[    1/a1        0 -a1/a3^2]
[       0     1/a2 -a2/a3^2]
[  -1/A^2   -1/A^2   -1/A^2]
sage: m=matrix(SR, 3, [1/a1, 0, -a1/a3^2, 0, 1/a2, -a2/a3^2,-1/A^2,
-1/A^2,-1/A^2 ])
sage: ~m
[a1 - a1^3/(A^2*a3^2*(1/A^2 + a1^2/(A^2*a3^2) + a2^2/(A^2*a3^2)))
-a1^2*a2/(A^2*a3^2*(1/A^2 + a1^2/(A^2*a3^2) + a2^2/(A^2*a3^2)))
 -a1^2/(a3^2*(1/A^2 + a1^2/(A^2*a3^2) + a2^2/(A^2*a3^2)))]
[ -a1*a2^2/(A^2*a3^2*(1/A^2 + a1^2/(A^2*a3^2) + a2^2/(A^2*a3^2))) a2 -
a2^3/(A^2*a3^2*(1/A^2 + a1^2/(A^2*a3^2) + a2^2/(A^2*a3^2)))
-a2^2/(a3^2*(1/A^2 + a1^2/(A^2*a3^2) + a2^2/(A^2*a3^2)))]
[           -a1/(A^2*(1/A^2 + a1^2/(A^2*a3^2) + a2^2/(A^2*a3^2)))
      -a2/(A^2*(1/A^2 + a1^2/(A^2*a3^2) + a2^2/(A^2*a3^2)))
       -1/(1/A^2 + a1^2/(A^2*a3^2) + a2^2/(A^2*a3^2))]


I want to find the inverse of the matrix following the pattern of
matrix(SR, 3, [1/a1, 0, -a1/a3^2, 0, 1/a2, -a2/a3^2,-1/A^2,
-1/A^2,-1/A^2 ]) of any size (not just 3x3).

Could anybody let me know what is the best way of doing it in sage?

-- 
Regards,
Peng

-- 
You received this message because you are subscribed to the Google Groups 
"sage-support" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-support+unsubscr...@googlegroups.com.
To post to this group, send email to sage-support@googlegroups.com.
Visit this group at http://groups.google.com/group/sage-support.
For more options, visit https://groups.google.com/d/optout.

Reply via email to