Hi, I am trying the following code on the following 3x3 matrix. But the result is not very clear. Here A=a1+a2+a3.
sage: var('a1,a2,a3,A') (a1, a2, a3, A) sage: matrix(SR, 3, [1/a1, 0, -a1/a3^2, 0, 1/a2, -a2/a3^2,-1/A^2, -1/A^2,-1/A^2 ]) [ 1/a1 0 -a1/a3^2] [ 0 1/a2 -a2/a3^2] [ -1/A^2 -1/A^2 -1/A^2] sage: m=matrix(SR, 3, [1/a1, 0, -a1/a3^2, 0, 1/a2, -a2/a3^2,-1/A^2, -1/A^2,-1/A^2 ]) sage: ~m [a1 - a1^3/(A^2*a3^2*(1/A^2 + a1^2/(A^2*a3^2) + a2^2/(A^2*a3^2))) -a1^2*a2/(A^2*a3^2*(1/A^2 + a1^2/(A^2*a3^2) + a2^2/(A^2*a3^2))) -a1^2/(a3^2*(1/A^2 + a1^2/(A^2*a3^2) + a2^2/(A^2*a3^2)))] [ -a1*a2^2/(A^2*a3^2*(1/A^2 + a1^2/(A^2*a3^2) + a2^2/(A^2*a3^2))) a2 - a2^3/(A^2*a3^2*(1/A^2 + a1^2/(A^2*a3^2) + a2^2/(A^2*a3^2))) -a2^2/(a3^2*(1/A^2 + a1^2/(A^2*a3^2) + a2^2/(A^2*a3^2)))] [ -a1/(A^2*(1/A^2 + a1^2/(A^2*a3^2) + a2^2/(A^2*a3^2))) -a2/(A^2*(1/A^2 + a1^2/(A^2*a3^2) + a2^2/(A^2*a3^2))) -1/(1/A^2 + a1^2/(A^2*a3^2) + a2^2/(A^2*a3^2))] I want to find the inverse of the matrix following the pattern of matrix(SR, 3, [1/a1, 0, -a1/a3^2, 0, 1/a2, -a2/a3^2,-1/A^2, -1/A^2,-1/A^2 ]) of any size (not just 3x3). Could anybody let me know what is the best way of doing it in sage? -- Regards, Peng -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To post to this group, send email to sage-support@googlegroups.com. Visit this group at http://groups.google.com/group/sage-support. For more options, visit https://groups.google.com/d/optout.