Hi all, I'm trying to solve the following system of two equations,
Eq1 = 2*a^2*cos(pi/n)^2 - 2*a - b - (a*sin((2*pi)/n)*(-2*(cos((2*pi)/n) - sin((2*pi)/n)*i)*(a^2*cos((2*pi)/n) - 4*a - 2*b + a^2 + 2))^(1/2))/2 + 2^(1/2)*a*cos(pi/n)^2*(-(cos((2*pi)/n) - sin((2*pi)/n)*i)*(a^2*cos((2*pi)/n) - 4*a - 2*b + a^2 + 2))^(1/2)*i + 1 == 1/2 Eq2 = a^2*(cos((4*pi)/n) + 1) - 2*a - b + (a*sin((4*pi)/n)*(-2*(cos((4*pi)/n) - sin((4*pi)/n)*i)*(a^2*cos((4*pi)/n) - 4*a - 2*b + a^2 + 2))^(1/2))/2 - 2^(1/2)*a*(cos((4*pi)/n)/2 + 1/2)*(-(cos((4*pi)/n) - sin((4*pi)/n)*i)*(a^2*cos((4*pi)/n) - 4*a - 2*b + a^2 + 2))^(1/2)*i + 1 == 1/4 where the three variables are defined using a,b,n = var('a,b,n'). Note that both expressions are quadratic in a and linear in b. Solving for a and b, I expect expressions in terms of (some function, e.g. cos, of) n. The command I tried for solving is solve([Eq1, Eq2], a, b). The input, so Eq1 and Eq2, is generated by MATLAB and Sage seems to be quite happy with it. However, I don't get any solutions — Sage prints the following output, [I*sqrt(2)*sqrt(-(a^2*cos(2*pi/n) + a^2 - 4*a - 2*b + 2)*(cos(2*pi/n) - I*sin(2*pi/n)))*a*cos(pi/n)^2 + 2*a^2*cos(pi/n)^2 - 1/2*sqrt(-(a^2*cos(2*pi/n) + a^2 - 4*a - 2*b + 2)*(2*cos(2*pi/n) - 2*I*sin(2*pi/n)))*a*sin(2*pi/n) - 2*a - b + 1 == (1/2), -1/2*I*sqrt(2)*sqrt(-(a^2*cos(4*pi/n) + a^2 - 4*a - 2*b + 2)*(cos(4*pi/n) - I*sin(4*pi/n)))*a*(cos(4*pi/n) + 1) + a^2*(cos(4*pi/n) + 1) + 1/2*sqrt(-(a^2*cos(4*pi/n) + a^2 - 4*a - 2*b + 2)*(2*cos(4*pi/n) - 2*I*sin(4*pi/n)))*a*sin(4*pi/n) - 2*a - b + 1 == (1/4)] What's happening and how can I fix it? Thanks. -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To post to this group, send email to sage-support@googlegroups.com. Visit this group at http://groups.google.com/group/sage-support. For more options, visit https://groups.google.com/d/optout.