Working in a stack of multivariate polynomial rings, how can I compute the quotient of two polynomials in those cases where I know the remainder to be zero?
Reading the docs I found two likely approaches, but neither seems to work as I'd have hoped. See below for error messages. Example: sage: PR1.<a,b>=QQ[] sage: PR2.<x,y>=PR1[] sage: n=(x-y)*(x+3*y) sage: d=(x-y) sage: n/d (x^2 + 2*x*y + (-3)*y^2)/(x - y) sage: PR2(n/d) --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-6-cc8d100cc210> in <module>() ----> 1 PR2(n/d) …/sage/rings/polynomial/multi_polynomial_ring.pyc in __call__(self, x, check) 449 return x.numerator() 450 else: --> 451 raise TypeError, "unable to coerce since the denominator is not 1" 452 453 elif is_SingularElement(x) and self._has_singular: TypeError: unable to coerce since the denominator is not 1 sage: n.quo_rem(d) --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-7-d17781c77d90> in <module>() ----> 1 n.quo_rem(d) …/sage/structure/element.so in sage.structure.element.NamedBinopMethod.__call__ (sage/structure/element.c:24924)() …/sage/rings/polynomial/multi_polynomial_element.pyc in quo_rem(self, right) 1730 return self.quo_rem(right) # this looks like recursion, but, in fact, it may be that self, right are a totally new composite type 1731 R = self.parent() -> 1732 R._singular_().set_ring() 1733 X = self._singular_().division(right._singular_()) 1734 return R(X[1][1,1]), R(X[2][1]) …/sage/rings/polynomial/polynomial_singular_interface.pyc in _singular_(self, singular) 213 return R 214 except (AttributeError, ValueError): --> 215 return self._singular_init_(singular) 216 217 def _singular_init_(self, singular=singular_default): …/sage/rings/polynomial/polynomial_singular_interface.pyc in _singular_init_(self, singular) 229 """ 230 if not can_convert_to_singular(self): --> 231 raise TypeError, "no conversion of this ring to a Singular ring defined" 232 233 if self.ngens()==1: TypeError: no conversion of this ring to a Singular ring defined -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To post to this group, send email to sage-support@googlegroups.com. Visit this group at http://groups.google.com/group/sage-support. For more options, visit https://groups.google.com/d/optout.