Is it possible (in Sage 5.9) to do high-precision simple integration (e.g. 
of polynomials)?

The following is an example of what doesn't work: while the coefficients of 
q are known to 30 digits, the coefficients of the integrals are known to at 
most 15.

a=RealField(100)(2)/3
q=a*x+a
print q
print q.integral(x, algorithm='maxima')
print q.integral(x, algorithm='sympy')

OUTPUT:
0.66666666666666666666666666667*x + 0.66666666666666666666666666667
0.333333333333*x^2 + 0.666666666667*x
0.333333333333333*x^2 + 0.666666666666667*x

-- 
You received this message because you are subscribed to the Google Groups 
"sage-support" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-support+unsubscr...@googlegroups.com.
To post to this group, send email to sage-support@googlegroups.com.
Visit this group at http://groups.google.com/group/sage-support?hl=en.
For more options, visit https://groups.google.com/groups/opt_out.


Reply via email to