Is it possible (in Sage 5.9) to do high-precision simple integration (e.g. of polynomials)?
The following is an example of what doesn't work: while the coefficients of q are known to 30 digits, the coefficients of the integrals are known to at most 15. a=RealField(100)(2)/3 q=a*x+a print q print q.integral(x, algorithm='maxima') print q.integral(x, algorithm='sympy') OUTPUT: 0.66666666666666666666666666667*x + 0.66666666666666666666666666667 0.333333333333*x^2 + 0.666666666667*x 0.333333333333333*x^2 + 0.666666666666667*x -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To post to this group, send email to sage-support@googlegroups.com. Visit this group at http://groups.google.com/group/sage-support?hl=en. For more options, visit https://groups.google.com/groups/opt_out.