Hello,

can anyone tell me how I can use sage to check that the following two 
(fairly simple) expressions coincide. Some unneeded background: both come 
from identities in character theory for complex reflection groups, Sage was 
able to solve similar expressions, see below, and this is the smallest 
example I have were it doesn't work ?

sage: f
-(e^(2/3*I*pi) + 1)*e^(2/15*I*pi - 32*XX) + 3*(e^(2/3*I*pi) + 
1)*e^(2/15*I*pi - 12*XX) - 5*(e^(2/3*I*pi) + 1)*e^(2/15*I*pi + 4*XX) + 
3*(e^(2/3*I*pi) + 1)*e^(2/15*I*pi + 8*XX) - 5*(e^(2/3*I*pi) + 1)*e^(4*XX) + 
6*(e^(2/3*I*pi) + 1)*e^(8*XX) - (e^(2/3*I*pi) + 1)*e^(28*XX) + 
3*(((e^(2/5*I*pi) + 1)*e^(2/5*I*pi) + 1)*e^(2/5*I*pi) + 1)*e^(-12*XX) - 
5*(((e^(2/5*I*pi) + 1)*e^(2/5*I*pi) + 1)*e^(2/5*I*pi) + 1)*e^(-8*XX) + 
3*(((e^(2/5*I*pi) + 1)*e^(2/5*I*pi) + 1)*e^(2/5*I*pi) + 1)*e^(8*XX) - 
(((e^(2/5*I*pi) + 1)*e^(2/5*I*pi) + 1)*e^(2/5*I*pi) + 1)*e^(28*XX) - 
5*(((((e^(2/15*I*pi) - 1)*e^(4/15*I*pi) + 1)*e^(2/15*I*pi) - 
1)*e^(2/15*I*pi) + 1)*e^(4/15*I*pi) - 1)*e^(4*XX) + 5*(((((e^(4/15*I*pi) - 
1)*e^(2/15*I*pi) + 1)*e^(2/15*I*pi) - 1)*e^(4/15*I*pi) + 1)*e^(2/15*I*pi) - 
1)*e^(4*XX) + 3*(((((e^(2/15*I*pi) - 1)*e^(4/15*I*pi) + 1)*e^(2/15*I*pi) - 
1)*e^(2/15*I*pi) + 1)*e^(4/15*I*pi) - 1)*e^(8*XX) - 3*(((((e^(4/15*I*pi) - 
1)*e^(2/15*I*pi) + 1)*e^(2/15*I*pi) - 1)*e^(4/15*I*pi) + 1)*e^(2/15*I*pi) - 
1)*e^(8*XX) + 3*(((((e^(2/15*I*pi) - 1)*e^(4/15*I*pi) + 1)*e^(2/15*I*pi) - 
1)*e^(2/15*I*pi) + 1)*e^(4/15*I*pi) - 1)*e^(-12*XX) - 3*(((((e^(4/15*I*pi) 
- 1)*e^(2/15*I*pi) + 1)*e^(2/15*I*pi) - 1)*e^(4/15*I*pi) + 1)*e^(2/15*I*pi) 
- 1)*e^(-12*XX) - (((((e^(2/15*I*pi) - 1)*e^(4/15*I*pi) + 1)*e^(2/15*I*pi) 
- 1)*e^(2/15*I*pi) + 1)*e^(4/15*I*pi) - 1)*e^(-32*XX) + (((((e^(4/15*I*pi) 
- 1)*e^(2/15*I*pi) + 1)*e^(2/15*I*pi) - 1)*e^(4/15*I*pi) + 1)*e^(2/15*I*pi) 
- 1)*e^(-32*XX) - ((((e^(4/15*I*pi) - 1)*e^(2/15*I*pi) + 1)*e^(2/5*I*pi) + 
1)*e^(2/15*I*pi) - 1)*e^(-32*XX) + 3*((((e^(4/15*I*pi) - 1)*e^(2/15*I*pi) + 
1)*e^(2/5*I*pi) + 1)*e^(2/15*I*pi) - 1)*e^(-12*XX) - 5*((((e^(4/15*I*pi) - 
1)*e^(2/15*I*pi) + 1)*e^(2/5*I*pi) + 1)*e^(2/15*I*pi) - 1)*e^(4*XX) + 
3*((((e^(4/15*I*pi) - 1)*e^(2/15*I*pi) + 1)*e^(2/5*I*pi) + 1)*e^(2/15*I*pi) 
- 1)*e^(8*XX) + 5*e^(4/15*I*pi + 4*XX) + 5*e^(14/15*I*pi + 4*XX) + 
5*e^(8/15*I*pi + 4*XX) + 5*e^(2/15*I*pi + 4*XX) + 5*e^(2/3*I*pi + 4*XX) + 
5*e^(6/5*I*pi - 8*XX) + 5*e^(4/5*I*pi - 8*XX) + 5*e^(2/5*I*pi - 8*XX) - 
3*e^(4/15*I*pi + 8*XX) - 3*e^(14/15*I*pi + 8*XX) - 3*e^(8/15*I*pi + 8*XX) - 
3*e^(2/15*I*pi + 8*XX) - 3*e^(4/15*I*pi - 12*XX) - 3*e^(14/15*I*pi - 12*XX) 
- 3*e^(8/15*I*pi - 12*XX) - 3*e^(2/15*I*pi - 12*XX) - 6*e^(2/3*I*pi + 8*XX) 
- 3*e^(6/5*I*pi + 8*XX) - 3*e^(4/5*I*pi + 8*XX) - 3*e^(2/5*I*pi + 8*XX) - 
3*e^(6/5*I*pi - 12*XX) - 3*e^(4/5*I*pi - 12*XX) - 3*e^(2/5*I*pi - 12*XX) + 
e^(4/15*I*pi - 32*XX) + e^(14/15*I*pi - 32*XX) + e^(8/15*I*pi - 32*XX) + 
e^(2/15*I*pi - 32*XX) + e^(6/5*I*pi + 28*XX) + e^(4/5*I*pi + 28*XX) + 
e^(2/5*I*pi + 28*XX) + e^(2/3*I*pi + 28*XX) + 5*e^(-8*XX) - 6*e^(8*XX) + 
e^(88*XX)
sage: g
e^(-32*XX) - 2*e^(28*XX) + e^(88*XX)

Other similar examples were property simplified:

sage: h
(((e^(2/5*I*pi) + 1)*e^(2/5*I*pi) + 1)*e^(2/5*I*pi) + 1)*e^(-42*XX) - 
5*(((e^(2/5*I*pi) + 1)*e^(2/5*I*pi) + 1)*e^(2/5*I*pi) + 1)*e^(-6*XX) + 
5*(((e^(2/5*I*pi) + 1)*e^(2/5*I*pi) + 1)*e^(2/5*I*pi) + 1)*e^(6*XX) - 
(((e^(2/5*I*pi) + 1)*e^(2/5*I*pi) + 1)*e^(2/5*I*pi) + 1)*e^(18*XX) + 
5*e^(6/5*I*pi - 6*XX) + 5*e^(4/5*I*pi - 6*XX) + 5*e^(2/5*I*pi - 6*XX) - 
5*e^(6/5*I*pi + 6*XX) - 5*e^(4/5*I*pi + 6*XX) - 5*e^(2/5*I*pi + 6*XX) - 
4*e^(1/10*I*pi + 3*XX) + 4*e^(7/10*I*pi + 3*XX) + 4*e^(3/10*I*pi + 3*XX) + 
4*e^(1/10*I*pi + 3*XX) - 4*e^(7/10*I*pi + 3*XX) - 4*e^(3/10*I*pi + 3*XX) - 
4*e^(6/5*I*pi + 3*XX) - 4*e^(4/5*I*pi + 3*XX) - 4*e^(2/5*I*pi + 3*XX) + 
4*e^(6/5*I*pi + 3*XX) + 4*e^(4/5*I*pi + 3*XX) + 4*e^(2/5*I*pi + 3*XX) + 
2*e^(1/10*I*pi + 18*XX) - 2*e^(7/10*I*pi + 18*XX) - 2*e^(3/10*I*pi + 18*XX) 
- 2*e^(1/10*I*pi + 18*XX) + 2*e^(7/10*I*pi + 18*XX) + 2*e^(3/10*I*pi + 
18*XX) + 2*e^(1/10*I*pi - 12*XX) - 2*e^(7/10*I*pi - 12*XX) - 2*e^(3/10*I*pi 
- 12*XX) - 2*e^(1/10*I*pi - 12*XX) + 2*e^(7/10*I*pi - 12*XX) + 
2*e^(3/10*I*pi - 12*XX) + e^(6/5*I*pi + 18*XX) + e^(4/5*I*pi + 18*XX) + 
e^(2/5*I*pi + 18*XX) - e^(6/5*I*pi - 42*XX) - e^(4/5*I*pi - 42*XX) - 
e^(2/5*I*pi - 42*XX) + 5*e^(-6*XX) - 5*e^(6*XX) - e^(18*XX) + e^(78*XX)

sage: h.factor().expand()
e^(-42*XX) - 2*e^(18*XX) + e^(78*XX)

I now tested the first equality by taking the first terms of the Taylor 
expansion of f and numerically evaluated the coefficients which turn out to 
coincide with the coefficients of the Taylor expansion of g.

Thanks for pointer or further ideas! Christian

-- 
You received this message because you are subscribed to the Google Groups 
"sage-support" group.
To post to this group, send email to sage-support@googlegroups.com.
To unsubscribe from this group, send email to 
sage-support+unsubscr...@googlegroups.com.
Visit this group at http://groups.google.com/group/sage-support?hl=en.


Reply via email to