Thanks Martin for the help. I find it very difficult to search for help in SAGE. Students in my class have written a lot of code in SAGE for number theory calculations but none for Boolean functions.
In the following what is function f, it looks like a random element of R. I suppose f.subs(x=1) substitutes this value in f. So for the specific random f chosen at the time this function is yz. What does the call f(*G) mean? Virendra On Tue, Jul 17, 2012 at 7:38 PM, Martin Albrecht < martinralbre...@googlemail.com> wrote: > sage: R.<x,y,z> = BooleanPolynomialRing(3) > sage: f = R.random_element() > sage: G = [R.random_element() for _ in range(3)] > sage: f.sub > f.subs f.substitute > sage: f.subs(x=1) > y*z > sage: f(*G) > x*y + x*z + x + y + 1 > > > On Tuesday 17 Jul 2012, virensule wrote: > > How do I evaluate and compose Boolean functions in Boolean polynomial > ring? > > > > For example I have > > > > R=BooleanPolynomialRing(3,x) > > x=R.gens() > > f=BooleanFunction(x[0]*x[1]+x[1]*x[2]+x[1]+1) > > > > Now how do I find the function g=f(evaluated when x[0]=1)? > > > > Also if g is another function defined similarly, how do I compute f(g()) > > composition? > > > > Can someone help please? > > > > Thanks in advance. > > Virendra > > Cheers, > Martin > > -- > name: Martin Albrecht > _pgp: http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x8EF0DC99 > _otr: 47F43D1A 5D68C36F 468BAEBA 640E8856 D7951CCF > _www: http://martinralbrecht.wordpress.com/ > _jab: martinralbre...@jabber.ccc.de > > -- > To post to this group, send email to sage-support@googlegroups.com > To unsubscribe from this group, send email to > sage-support+unsubscr...@googlegroups.com > For more options, visit this group at > http://groups.google.com/group/sage-support > URL: http://www.sagemath.org > -- Virendra Sule Professor Dept. of Electrical Engg. IIT Bombay Powai, Mumbai 400076. Tel: (O): 022 25767492 -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org