Hi everybody, I want implement a extend Euclidean Algorithm ( to solve a(x) congruence b(x)R(x) mod (g(x))), (egcd function), but this give wrong results, below my egcd, please help me to fix ... I am testing with inverse multiplicative from output of xgcd def egcd(p1,p2): if p2 == PR(0): return (p1,1,0) else: (q1, r1) = (p1).quo_rem(p2) (d,s1,t1) = egcd(p2, r1) return (d,t1,(s1 - q1 * t1)) m = 4 F.<x> = GF(2) Phi.<x> = GF(2^m); PR = PolynomialRing(Phi,'z'); N = 2^m - 1; X = PolynomialRing(Phi,repr('z')).gen(); g = X^4+X^3+X^2+1+x^2; # goppa polynomial R = (x^3 + x^2 + 1)*X^3 + (x^3 + x^2 + x)*X^2 + (x^2 + 1)*X + x^3 + x (a11,b11,c11) = egcd(g,R) print 'testing',((c11.mod(g)*(R))).mod(g) (a11,b11,c11) = xgcd(g,R) print 'testing',((c11.mod(g)*(R))).mod(g)
On 29 sep, 07:54, juaninf <juan...@gmail.com> wrote: > in the paper that I reading say use Euclides Algorithm, but I dont > know how > > On 29 sep, 07:29, juaninf <juan...@gmail.com> wrote: > > > > > > > > > g(x) is prime polynomial > > > On 29 sep, 07:28, juaninf <juan...@gmail.com> wrote: > > > > How do a(x) congruence b(x)R(x) mod (g(x)) in sage? > > > > thanks by your answers -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org