I take it this is failing because Maxima can't determine that my upper bound is real. Is there some way to make it do what I want?
> sage: B0 = SR.symbol('B0', domain='real') > sage: B1 = SR.symbol('B1', domain='real') > sage: B2 = SR.symbol('B2', domain='real') > sage: B3 = SR.symbol('B3', domain='real') > sage: u = SR.symbol('u', domain='real') > sage: integrand = -(1/6)*B0*u^3 - (1/2)*B1*u^2 - B2*u - B3 > sage: upper_bound = (sqrt(9*B0^2*B3^2 + 8*B0*B2^3 - 3*B1^2*B2^2 - > 6*(3*B0*B1*B2 - B1^3)*B3)/B0^2 - (3*B0^2*B3 - 3*B0*B1*B2 + B1^3)/B0^3)^(1/3) > - B1/B0 - (2*B0*B2 - B1^2)/((sqrt(9*B0^2*B3^2 + 8*B0*B2^3 - 3*B1^2*B2^2 - > 6*(3*B0*B1*B2 - B1^3)*B3)/B0^2 - (3*B0^2*B3 - 3*B0*B1*B2 + > B1^3)/B0^3)^(1/3)*B0^2) > sage: integrate(integrand, (u, 0, upper_bound)) > ERROR: An unexpected error occurred while tokenizing input > The following traceback may be corrupted or invalid > The error message is: ('EOF in multi-line statement', (543, 0)) > ... > TypeError: Error executing code in Maxima > CODE: > sage4 : integrate(sage0,sage1,sage2,sage3)$ > Maxima ERROR: > > defint: upper limit of integration must be real; found errexp1 > -- an error. To debug this try: debugmode(true); -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org