Thanks for the reply. In my particular instance, there are a lot of constants, and the problem looks a bit difficult to automate. Here are the specifics:
var('x1,x2,x3,x4,k,x,y,z', domain=RR) # Definition of P = Im[(x1 + i x2)^k] P(k, x1, x2, x3, x4) = (x1^2 + x2^2)^(k/2)*sin(k*arctan2(x2,x1)) # Definition of Q = Im[(x1 + i x3)^k] Q(k, x1, x2, x3, x4) = (x1^2 + x3^2)^(k/2)*sin(k*arctan2(x3,x1)) InverseProject(x,y,z) = ((x^2 + y^2 + z^2 -1)/(x^2 + y^2 + z^2 +1), 2*x/(x^2 + y^2 + z^2 +1), 2*y/(x^2 + y^2 + z^2 +1), 2*z/(x^2 + y^2 + z^2 +1)) nodalSetForP(k,x,y,z) = P(k, InverseProject(x,y,z)[0], InverseProject(x,y,z)[1], InverseProject(x,y,z)[2], InverseProject(x,y,z)[3]) nodalSetForQ(k,x,y,z) = Q(k, InverseProject(x,y,z)[0], InverseProject(x,y,z)[1], InverseProject(x,y,z)[2], InverseProject(x,y,z)[3]) nodalSet1 = nodalSetForP(3,x,y,z) == 0 nodalSet2 = nodalSetForQ(3,x,y,z) == 0 This yields: sage: solve([nodalSet1, nodalSet2], x, y, z) [[x == 0, y == 0, z == c65], # [x == 0, y == c70, z == -1/3*sqrt(-3*c70^2 + 2*sqrt(3)*c70 + 3)*sqrt(3)], # [x == 0, y == c71, z == 1/3*sqrt(-3*c71^2 + 2*sqrt(3)*c71 + 3)*sqrt(3)], # [x == 0, y == c72, z == -1/3*sqrt(-3*c72^2 - 2*sqrt(3)*c72 + 3)*sqrt(3)], # [x == 0, y == c73, z == 1/3*sqrt(-3*c73^2 - 2*sqrt(3)*c73 + 3)*sqrt(3)], # [x == c66, y == 0, z == -1/3*sqrt(-3*c66^2 + 2*sqrt(3)*c66 + 3)*sqrt(3)], # [x == c67, y == 0, z == 1/3*sqrt(-3*c67^2 + 2*sqrt(3)*c67 + 3)*sqrt(3)], # [x == c68, y == 0, z == -1/3*sqrt(-3*c68^2 - 2*sqrt(3)*c68 + 3)*sqrt(3)], # [x == c69, y == 0, z == 1/3*sqrt(-3*c69^2 - 2*sqrt(3)*c69 + 3)*sqrt(3)], # [x == c74, y == c74, z == -1/3*sqrt(-6*c74^2 + 2*sqrt(3)*c74 + 3)*sqrt(3)], # [x == c75, y == c75, z == 1/3*sqrt(-6*c75^2 + 2*sqrt(3)*c75 + 3)*sqrt(3)], # [x == c76, y == c76, z == -1/3*sqrt(-6*c76^2 - 2*sqrt(3)*c76 + 3)*sqrt(3)], # [x == c77, y == c77, z == 1/3*sqrt(-6*c77^2 - 2*sqrt(3)*c77 + 3)*sqrt(3)], # [x == c78, y == -c78, z == -1/3*sqrt(-6*c78^2 + 2*sqrt(3)*c78 + 3)*sqrt(3)], # [x == c79, y == -c79, z == 1/3*sqrt(-6*c79^2 + 2*sqrt(3)*c79 + 3)*sqrt(3)], # [x == c80, y == -c80, z == -1/3*sqrt(-6*c80^2 - 2*sqrt(3)*c80 + 3)*sqrt(3)], # [x == c81, y == -c81, z == 1/3*sqrt(-6*c81^2 - 2*sqrt(3)*c81 + 3)*sqrt(3)]] which means there are 81-65 = 16 constants (and this is just for when k = 3 -- k can be any non-negative integer). Is there no way to automate the process of taking solutions from solve([nodalSet1, nodalSet2], x, y, z) and then plotting them? -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org