Yes but I want to define a coalgebra and use a coproduct and tensor which rings dont have. If I could do these things with the ring structure then please tell me how. thanks
On Jul 6, 8:53 pm, Mike Hansen <mhan...@gmail.com> wrote: > On Wed, Jul 6, 2011 at 9:51 AM, jeremy chabot <chabo...@gmail.com> wrote: > > Hi, I am trying to implement the infinite polynomial ring as a free > > commutative algebra. > > > I am unsure of exactly how to do this. So far I have: > > > ----------------------------------------------------------------------------------- > > X.<x>=InfinitePolynomialRIng(QQ) > > ---------------------------------------------------------------------------------- > > class Practice3(CombinatorialFreeModule): > > def __init__(self, R, X, **keywords): > > self._group= X > > CombinatorialFreeModule.__init__(self, R, self._group, > > category=AlgebrasWithBasis(QQ)) > > return > > ----------------------------------------------------------------------------------- > > I'm not sure exactly what you're trying to do. It seems like you just > want to use InfinitePolynomialRing directly: > > sage: X.<x> = InfinitePolynomialRing(QQ) > sage: x[1]*x[2] + x[3] > x_3 + x_2*x_1 > sage: _*x[100] > x_100*x_3 + x_100*x_2*x_1 > > --Mike -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org