Without additional assumption that x is constant the limit is not zero (take for example x=(1/2)^(1/(n+1)) (W... alpha: Assuming[x=const,x<1,x>0];Limit[x^(n+1)/(1-x),n->+Infinity] 0 OK, Assuming[x<1,x>0];Limit[x^(n+1)/(1-x),n->+Infinity] unevaluated OK) On 15 Kwi, 06:00, Dan Drake <dr...@kaist.edu> wrote: > Why doesn't this work? > > sage: assume(x > -1) > sage: assume(x < 1) > sage: n = var('n') > sage: limit(x^(n+1)/(1-x), n=infinity) > -limit(x^(n + 1), n, +Infinity)/(x - 1) > > ...when this works: > > sage: forget() > sage: assume(0 < x) > sage: assume(x < 1) > sage: limit(x^(n+1)/(1-x), n=infinity) > 0 > > and > > sage: forget() > sage: assume(x < 0) > sage: assume(-1 < x) > sage: limit(x^(n+1)/(1-x), n=infinity) > 0 > > ? > > Any ideas? I'm sure this is some Maxima thing, but I don't know how to > work with Maxima. > > Thanks! > > Dan > > -- > --- Dan Drake > ----- http://mathsci.kaist.ac.kr/~drake > ------- > > signature.asc > < 1KWyświetlPobierz
-- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org