Is your function usable? def mplegp(n,m,x): V=mpmath.legenp(n,m,x) return float(V.real)+I*float(V.imag) sage: time plot(lambda x:mplegp(2.1,0,x).real(),(x,-1,1)) CPU times: user 0.87 s, sys: 0.00 s, total: 0.87 s Wall time: 0.87 s
On 13 Kwi, 19:48, ObsessiveMathsFreak <obsessivemathsfr...@gmail.com> wrote: > On Apr 12, 8:52 pm, ObsessiveMathsFreak > > > > <obsessivemathsfr...@gmail.com> wrote: > > On Apr 12, 3:51 am, kcrisman <kcris...@gmail.com> wrote: > > > > > > Or simply legendre_P, legendre_Q > > > > > Unfortunately, these functions do not support non integer values of n, > > > > i.e. they don't support generalised legendre functions, which is what > > > > I need. > > > > Are gen_legendre_P and gen_legendre_Q okay? These are all used from > > > Maxima, as I recall. > > > > - kcrisman > > > They worked and were a _lot_ faster. Thanks! > > > sage: time plot([lambda x: P(n,0,x), lambda x: Q(n,0,x)], > > (x,-1,1),ymin=-2,ymax=2) > > sage: time plot([gen_legendre_P(n,0,x), gen_legendre_Q(n,0,x)], > > (x,-1,1),ymin=-2,ymax=2) > > Time: CPU 3.79 s, Wall: 3.80 s > > Time: CPU 0.32 s, Wall: 0.41 s > > Actually, it appears I was mistaken. gen_legendre_P does not appear to > work for non integral n at least > > gen_legendre_P(2.1,0,1) > TypeError: Attempt to coerce non-integral RealNumber to Integer > > I think I must have been running the test with integer values for n. > In fact the code for gen_legendre_P explicitly states that it is only > valid for integer values of n. > > mpmath still works, but it seems to be a bit awkward to translate the > result from class mpc to a normal sage value. > > float(mpmath.legenp(2.1,0,-2)) > TypeError: float() argument must be a string or a number > > You have to be pretty roundabout with things > > V=mpmath.legenp(2.1,0,-2) > z=float(V.real)+I*float(V.imag) > z > 5.83105230126 + 1.8957900574*I -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org