So it seems that in Sage use_grobner is not as essential
as in Maxima

sage: maxima('load(to_poly_solver)')
sage: maxima('to_poly_solve([(x-5)^2+y^2-16, (y-3)^2+x^2-9], [x,y])')
%union()
sage: maxima('to_poly_solve([(x-5)^2+y^2-16, (y-3)^2+x^2-9],
[x,y],use_grobner=true)')
%union([x=-(9*sqrt(55)-135)/68,y=-(3*5^(3/2)*sqrt(11)-123)/68],
[x=(9*sqrt(55)+135)/68,y=(3*5^(3/2)*sqrt(11)+123)/68])

> Oops!
> without "to_poly_solve='use_grobner=True'"
> also works
>
> On 11 Kwi, 13:37, achrzesz <achrz...@wp.pl> wrote:
>
> > sage: solve([(x-5)^2+y^2-16, (y-3)^2+x^2-9],
> > [x,y],to_poly_solve='use_grobner=True')
> > [[x == -9/68*sqrt(55) + 135/68, y == -15/68*sqrt(5)*sqrt(11) +
> > 123/68], [x == 9/68*sqrt(55) + 135/68, y == 15/68*sqrt(5)*sqrt(11) +
> > 123/68]]
>
> > On 11 Kwi, 13:29, achrzesz <achrz...@wp.pl> wrote:
>
> > > to_poly_solve([(x-5)^2+y^2-16, (y-3)^2+x^2-9], [x,y],
> > > use_grobner=true);
>
> > > works in wxmaxima 0.8.7 but does not in maxima_console()
>
> > > On 11 Kwi, 13:06, achrzesz <achrz...@wp.pl> wrote:
>
> > > > I'm not sure but:
> > > > sage: solve(x==sqrt(x+1),x,to_poly_solve='use_grobner=True')
> > > > [x == 1/2*sqrt(5) + 1/2]
>
> > > > On 11 Kwi, 12:24, ancienthart <joalheag...@gmail.com> wrote:
>
> > > > > Now THAT seriously needs to be made clearer in the documentation, 
> > > > > including
> > > > > some examples.
> > > > > Also, how to use use_grobner because use_grobner=True don't work.
>
> > > > > Joal Heagney
>
>

-- 
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support+unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URL: http://www.sagemath.org

Reply via email to