Hello, I recently upgraded sage to the binary version 4.6.2 for Ubuntu i586, and ran into the following error:
sage: (r,s,t,c,d,p,q) = var( 'r,s,t,c,d,p,q' ) sage: A = matrix( [ [r, -s, r, -s], [t, 0, t-p, -p], [r, -s-c, r, -s-d], [t, -c, t-q, -q-d] ] ) sage: A [ r -s r -s] [ t 0 -p + t -p] [ r -c - s r -d - s] [ t -c -q + t -d - q] sage: u = A.solve_right( vector([1,1,1,1]) ) --------------------------------------------------------------------------- NotImplementedError Traceback (most recent call last) /home/duenez/Download/sage-4.6.2-linux-32bit-ubuntu_10.04_lts-i686-Linux-i686-Linux/<ipython console> in <module>() /home/duenez/Download/sage-4.6.2-linux-32bit-ubuntu_10.04_lts-i686-Linux-i686-Linux/local/lib/python2.6/site-packages/sage/matrix/matrix2.so in sage.matrix.matrix2.Matrix.solve_right (sage/matrix/matrix2.c:3387)() /home/duenez/Download/sage-4.6.2-linux-32bit-ubuntu_10.04_lts-i686-Linux-i686-Linux/local/lib/python2.6/site-packages/sage/rings/ring.so in sage.rings.ring.Ring.is_integral_domain (sage/rings/ring.c:6035)() NotImplementedError: This was working perfectly in version 4.5.3 OpenSuSE 11.1, and it seems that it has nothing to do with SuSE vs Ubuntu (I am on OpenSuSE 11.4). It seems that the problem is in the Symbolic Ring (SR) not implementing the *is_integral_domain *function. This changed from 4.3 to 4.6 in ticket #10481 where they (correctly) changed the behavior of *is_integral_domain() *to raise an exception. The problems seems to be that SR does not implement this correctly. SR should be an integral domain for most practical uses, right? Or am I missing something? If this is truly a bug (or unintended feature), I think overriding * is_integral_domain* in SymbolicRing to return *True* should be a good idea. Thanks, Edgar -- Dr. Edgar A. Duenez-Guzman Postdoctoral Fellow Department of Organismic and Evolutionary Biology Harvard University -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org