Update: after reading #10346 on http://www.sagemath.org/mirror/src/changelogs/sage-4.6.2.txt I upgraded to 4.6.2 and am still having the same problem (no eigenvectors specified, even with 500 digits of precision).
sage: version() 'Sage Version 4.6.2, Release Date: 2011-02-25' sage: !uname -a Linux ben-desktop 2.6.31-14-generic #48-Ubuntu SMP Fri Oct 16 14:05:01 UTC 2009 x86_64 GNU/Linux On Mar 30, 10:44 am, Ben123 <ben.is.loca...@gmail.com> wrote: > Hello. I've written a sage program which produces a complex matrix. I > want to find the eigenvalues and associated eigenvectors. I also want > to use arbitrary precision. I don't care about speed. I've read old > posts to this group on this topic, but am unsure how to proceed. > Currently I'm using the following method and using sage 4.6.1 > > precision_digits=30 > nop=5 # rank of matrix > MS_nop_comp=MatrixSpace(ComplexField(precision_digits),nop,nop) > tmat=MS_nop_comp(0) # zero-ize the values > ttdag=MS_nop_comp(0) > > # I realize there are more efficient methods of getting a random > matrix, but this is explicit > for a in range(nop): > for b in range(nop): > tmat[a,b]=random()+I*random() > > ttdag=tmat*tmat.conjugate().transpose() # get a Hermitian matrix > print 'ttdag is' > print ttdag > print 'eigenvalues of ttdag are ' > print ttdag.eigenvalues() # eigenvalues of Hermitian matrix should be > real. Imaginary component is due to finite precision. > # I can get better precision here by increasing precision_digits > > #print ttdag.eigenmatrix_right() > # IndexError: list index out of range > > print ttdag.eigenvectors_right() > # this is not returning the eigenvectors, even when precision is > increased to 500 > > How can I find the eigenvectors of a complex Hermitian matrix with > arbitrary precision? > > Thanks, -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org