Update: after reading #10346 on
http://www.sagemath.org/mirror/src/changelogs/sage-4.6.2.txt
I upgraded to 4.6.2 and am still having the same problem (no
eigenvectors specified, even with 500 digits of precision).

sage: version()
'Sage Version 4.6.2, Release Date: 2011-02-25'
sage: !uname -a
Linux ben-desktop 2.6.31-14-generic #48-Ubuntu SMP Fri Oct 16 14:05:01
UTC 2009 x86_64 GNU/Linux


On Mar 30, 10:44 am, Ben123 <ben.is.loca...@gmail.com> wrote:
> Hello. I've written a sage program which produces a complex matrix. I
> want to find the eigenvalues and associated eigenvectors. I also want
> to use arbitrary precision. I don't care about speed. I've read old
> posts to this group on this topic, but am unsure how to proceed.
> Currently I'm using the following method and using sage 4.6.1
>
> precision_digits=30
> nop=5 # rank of matrix
> MS_nop_comp=MatrixSpace(ComplexField(precision_digits),nop,nop)
> tmat=MS_nop_comp(0) # zero-ize the values
> ttdag=MS_nop_comp(0)
>
> # I realize there are more efficient methods of getting a random
> matrix, but this is explicit
> for a in range(nop):
>   for b in range(nop):
>     tmat[a,b]=random()+I*random()
>
> ttdag=tmat*tmat.conjugate().transpose() # get a Hermitian matrix
> print 'ttdag is'
> print ttdag
> print 'eigenvalues of ttdag are '
> print ttdag.eigenvalues() # eigenvalues of Hermitian matrix should be
> real. Imaginary component is due to finite precision.
> # I can get better precision here by increasing precision_digits
>
> #print ttdag.eigenmatrix_right()
> # IndexError: list index out of range
>
> print ttdag.eigenvectors_right()
> # this is not returning the eigenvectors, even when precision is
> increased to 500
>
> How can I find the eigenvectors of a complex Hermitian matrix with
> arbitrary precision?
>
> Thanks,

-- 
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support+unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URL: http://www.sagemath.org

Reply via email to