Hi, I'm looking for a way to create a map from ZZ^3 to Hom(ZZ^3,Z) mapping an element x to x :-> <x,-> where <-,-> is the default scalarproduct. i know i could do this by vertormultiplikation, but i want to know if it's possible to do with the Hom function.
I tried this one: H = Hom(ZZ^3,Hom(ZZ^3,ZZ)) #this works #creating a very simple homom. fails: f = H([0,0,0]) --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) /home/j_schn14/<ipython console> in <module>() /opt/sage-4.6/local/lib/python2.6/site-packages/sage/modules/free_module_homspace.pyc in __call__(self, A, check) 126 C = self.codomain() 127 try: --> 128 v = [C(a) for a in A] 129 A = matrix.matrix([C.coordinates(a) for a in v]) 130 except TypeError: /opt/sage-4.6/local/lib/python2.6/site-packages/sage/modules/free_module_homspace.pyc in __call__(self, A, check) 130 except TypeError: 131 pass --> 132 return free_module_morphism.FreeModuleMorphism(self, A) 133 134 def _matrix_space(self): /opt/sage-4.6/local/lib/python2.6/site-packages/sage/modules/free_module_morphism.pyc in __init__(self, parent, A) 81 if isinstance(A, matrix_morphism.MatrixMorphism): 82 A = A.matrix() ---> 83 A = parent._matrix_space()(A) 84 matrix_morphism.MatrixMorphism.__init__(self, parent, A) 85 /opt/sage-4.6/local/lib/python2.6/site-packages/sage/modules/free_module_homspace.pyc in _matrix_space(self) 150 except AttributeError: 151 R = self.domain().base_ring() --> 152 M = matrix.MatrixSpace(R, self.domain().rank(), self.codomain().rank()) 153 self.__matrix_space = M 154 return M is this a bug, or something which is just not implemented? It fails if i use QQ instead of ZZ too. greatz Johannes -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org