On 12 bře, 21:19, Guillaume <desco...@yahoo.fr> wrote: > > No, AFAIK, nothing other than explicit substitution with .subs(). > > Hello, > > there are a few weird results. I'd like to solve this homogenous edo : > > $tx'=x+\sqrt{x^2+y^2}$. > > using x=tu > > sage: t=var('t') > sage: x(t) = function('x',t) > sage: id(t)=t > sage: u=function('u',t) > sage: d=diff(u*id,t) >
Is this what you want? sage: t=var('t') sage: x= function('x',t) sage: id(t)=t sage: u=function('u',t) sage: d=diff(u*id,t) sage: assume(t>0) sage: DE=(t*d==x+sqrt(t**2+x**2)).subs_expr(x==u*id) sage: A=desolve(DE,u) sage: C=var('C') sage: A._maxima_().ev(logarc=true).sage().solve(u)[0].subs(c=log(C)) u(t) == C*t - sqrt(u(t)^2 + 1) sage: eq = u == C*t - sqrt(u^2 + 1) sage: ((eq-C*t)^2).solve(u) [u(t) == 1/2*(C^2*t^2 - 1)/(C*t)] The fact that the integral in A in not evaluated is probably a bug. You may want to open trac on this and test, if this bug is inside Maxima or in Sage interface to Maxima. Robert -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org