Sorry I should have said a system of multivariate polynomials. Raphael
On Mar 8, 3:59 pm, lesshaste <drr...@gmail.com> wrote: > I am having problems simply defining a multivariate polynomial. I have > a slightly modified excerpt from a very helpful python script I was > given that looks like > > #!/opt/sage-4.3.3-linux-32bit-ubuntu_9.10-i686-Linux/sage -python > > import sys > from sage.all import * > > from polybori.blocks import declare_ring > from polybori.blocks import HigherOrderBlock > > index1_range=range(2) > index2_range=range(2) > index3_range=range(3) > size=(len(index1_range),len(index2_range),len(index3_range)) > declare_ring([HigherOrderBlock("alpha",size),HigherOrderBlock("beta",size),HigherOrderBlock("gamma",size)], > globals()) > def delta(a,b,c,d,i,j,k): > if b==c and i==a and j==d: > return 1 > else: > return 0 > > ideal=[ sum([alpha(a,b,k)*beta(c,d,k)*gamma(i,j,k) for k in > index3_range]) + delta(a,b,c,d,i,j,k) for a in index1_range\ > for b in index2_range for c in index1_range\ > for d in index2_range for i in index1_range for j in > index2_range ] > > I would like "ideal" to be an ideal so I can do things like > ideal.groebner_basis() . Sorry for the dim question but how do I do > that? > > Raphael -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org