Thanks. Unfortunately, for my particular example, it didn't work as is ---------------------------------------------------------------------- | Sage Version 4.2, Release Date: 2009-10-24 | | Type notebook() for the GUI, and license() for information. | ---------------------------------------------------------------------- sage: alpha=700 sage: mu1=0.1 sage: mu2=0.2 sage: pI=0.8 sage: l=5 sage: r=1.0 sage: b=r+l sage: c=r*mu1+l*(1-pI)*mu2 sage: a=lambda x: alpha*x-mu1+mu2 sage: f=lambda x: (a(x)*b-c+sqrt((a(x)*b-c)^2+4.0*a(x)*b*r*mu1))/(2*a (x)*mu1) sage: g=lambda x: (r+l-mu1*f(x))/mu2 sage: prev=lambda x: f(x)/(f(x)+g(x)) sage: k=lambda x: diff(prev(x),x) sage: k(x=0.03) --------------------------------------------------------------------------- TypeError Traceback (most recent call last)
/Applications/sage/<ipython console> in <module>() /Applications/sage/<ipython console> in <lambda>(x) /Applications/sage/local/lib/python2.6/site-packages/sage/calculus/ functional.pyc in derivative(f, *args, **kwds) 133 if not isinstance(f, Expression): 134 f = SR(f) --> 135 return f.derivative(*args, **kwds) 136 137 diff = derivative /Applications/sage/local/lib/python2.6/site-packages/sage/symbolic/ expression.so in sage.symbolic.expression.Expression.derivative (sage/ symbolic/expression.cpp:11427)() /Applications/sage/local/lib/python2.6/site-packages/sage/misc/ derivative.so in sage.misc.derivative.multi_derivative (sage/misc/ derivative.c:2175)() /Applications/sage/local/lib/python2.6/site-packages/sage/symbolic/ expression.so in sage.symbolic.expression.Expression._derivative (sage/ symbolic/expression.cpp:11721)() TypeError: argument symb must be a symbol I had to type sage: k(x).subs(x=0.03) 0.0262047639227205 By the way, there is something still puzzling me. The equivalent Maple code gives a value of .883. Who should I believe ?
-- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org