On Sun, Jan 17, 2010 at 10:11 PM, Rolandb <rola...@planet.nl> wrote:
> Hi,
>
> Consider:
>
> def tau(m):
>    q = PowerSeriesRing(QQ, 'q', default_prec=12).gen()
>    pq=prod([(1-q^k)^24 for k in range(1,m)])
>    return pq.coefficients()[:m]
>
> tau(20)
> [1, -24, 252, -1472, 4830, -6048, -16744, 84480, -113643, -115920,
> 534612, -370944, -577738, 401856, 1217160, 987136, -6905934, 2727432,
> 10661420, -7109760]
>
> If m increases, this routine becomes is slow. Is there a fast routine
> (or table) for large m?

Use the delta_qexp command:

sage: delta_qexp(20)
q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 - 16744*q^7 +
84480*q^8 - 113643*q^9 - 115920*q^10 + 534612*q^11 - 370944*q^12 -
577738*q^13 + 401856*q^14 + 1217160*q^15 + 987136*q^16 - 6905934*q^17
+ 2727432*q^18 + 10661420*q^19 + O(q^20)

and

sage: list(delta_qexp(20))    # the list you have above

The command delta_qexp(20) is extremely fast.  In fact, I think it is
the fastest implementation of that command available in any general
math software.  (Thanks basically to David Harvey, Bill Hart, and
Craig Citro.)

William
-- 
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support+unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URL: http://www.sagemath.org

Reply via email to