You could also use the LP solver in cvxopt. http://www.sagemath.org/doc/numerical_sage/cvxopt.html
For your example problem: sage: RealNumber=float sage: Integer=int sage: from cvxopt.base import matrix as m sage: from cvxopt import solvers sage: c = m([-1., -5.]) sage: G = m([[1., 1.5, -1., 0.], [0.2, 3., 0., -1.]]) sage: h = m([4., 4., 0., 0.]) sage: sol = solvers.lp(c,G,h) sage: print sol['x'] sage: print -c.trans() * sol['x'] HTH! Rick On Dec 9, 7:28 am, hassan <hsn.zam...@gmail.com> wrote: > Hi all > I need to solve a LP so I have installed 'csc': > > sage: p.solve(solver='cbc') > > and then copy and paste the example > inhttp://www.sagemath.org/doc/reference/sage/numerical/mip.htmthat is: > > sage: p = MixedIntegerLinearProgram(maximization=True) > sage: x = p.new_variable() > sage: p.set_objective(x[1] + 5*x[2]) > sage: p.add_constraint(x[1] + 0.2*x[2], max=4) > sage: p.add_constraint(1.5*x[1] + 3*x[2], max=4) > sage: p.solve() > > and the result is: > > --------------------------------------------------------------------------- > AttributeError Traceback (most recent call > last) > > /home/hassan/<ipython console> in <module>() > > /home/hassan/Apps/sage-4.2.1/local/lib/python2.6/site-packages/sage/numerical/mip.so > in sage.numerical.mip.MixedIntegerLinearProgram.solve > (sage/numerical/mip.c:5059)() > > /home/hassan/Apps/sage-4.2.1/local/lib/python2.6/site-packages/sage/numerical/mipCoin.so > in sage.numerical.mipCoin.solveCoin (patch/mipCoin.cpp:595)() > > AttributeError: MixedIntegerLinearProgram instance has no attribute > '_variables_type' > > Pleas Help! -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org