Dear all, I need to compute some larger powers of polynomials in characteristic p>0. I've noticed that Sage does not do it very efficiently, as even f^(p^n) takes a long time. I wrote the following code then:
================================ # write m in base n (as vector): # [v0, v1, ..., vk] --> m = v0 + v1*n + ... + vk*n^k def base_n(m,n): if m == 0: return [] tm, m0 = divmod(m,n) return [ m0 ] + base_n(tm,n) # powers of powers of p def pol_p_power(f,p,k): # computes f^(p^k) pp=parent(f).characteristic() if pp== p: # right call! res=0 for mon in f.monomials(): res+=f.monomial_coefficient(mon)^(p^k)*mon^(p^k) return res else: # wrong p -- regular power f^(p^k) # compute f^n using the characteristic! def pol_power(f,n): P=parent(f) p=P.characteristic() v=base_n(n,p) # write n in base p pwrs={0 : P(1), 1 : f} # save computed powers res=1 for i in range(len(v)): if v[i]!=0: # need this term if v[i] in pwrs: # power computed before res*=pol_p_power(pwrs[v[i]],p,i) else: # power not computed before -- save it! pwrs[v[i]]=f^(v[i]) res*=pol_p_power(pwrs[v[i]],p,i) return res # compute maximum of a vector def my_max(v): res=v[0] for i in range(1,len(v)): if v[i] > res: res=v[i] return res # compute f^n using the characteristic # in this one we precompute all necessary powers def pol_power2(f,n): P=parent(f) p=P.characteristic() v=base_n(n,p) pwrs={0 : P(1), 1 : f} # save computed powers M=my_max(v) # maximum power for i in range(2,M+1): # precompute all powers up to the maximum pwrs[i]=pwrs[i-1]*f for i in range(M+1): # save some memory by keeping only the ones we need if not(i in v): del pwrs[i] res=1 for i in range(len(v)): if v[i]!=0: res*=pol_p_power(pwrs[v[i]],p,i) return res ================================ Here is a test: ================================ boole[~/comp/sage]$ sage ---------------------------------------------------------------------- | Sage Version 4.1.2, Release Date: 2009-10-13 | | Type notebook() for the GUI, and license() for information. | ---------------------------------------------------------------------- sage: attach 'pol_power.sage' sage: p=13 sage: F=GF(p) sage: P.<x,y,z>=PolynomialRing(F,3) sage: nterm=5 sage: pwr=10 sage: f=sum( [F.random_element()*x^randint(0,pwr)*y^randint(0,pwr) *z^randint(0,pwr) for i in\ ...: range(nterm)] ) sage: print "f = ", f f = 2*x^10*y^6*z^3 - 2*x^6*y^3*z^9 - 5*x^3*y^2*z^9 + y^7*z^6 - x^4*y^7 sage: ntry=20 sage: min=100 sage: max=1000 sage: for i in random_sublist(range(min,max),ntry/(max-min)): ....: print "i = ", i ....: %time a=pol_power(f,i) ....: %time b=pol_power2(f,i) ....: %time c=f^i # sage's builtin ....: a==c ....: b==c ....: print "######################" ....: print "" ....: i = 101 CPU times: user 0.09 s, sys: 0.02 s, total: 0.11 s Wall time: 0.11 s CPU times: user 0.10 s, sys: 0.01 s, total: 0.11 s Wall time: 0.11 s CPU times: user 0.89 s, sys: 0.17 s, total: 1.06 s Wall time: 1.07 s _18 = True _18 = True ###################### i = 137 CPU times: user 0.12 s, sys: 0.02 s, total: 0.14 s Wall time: 0.14 s CPU times: user 0.13 s, sys: 0.02 s, total: 0.14 s Wall time: 0.14 s CPU times: user 3.36 s, sys: 0.72 s, total: 4.08 s Wall time: 4.08 s _21 = True _21 = True ###################### i = 138 CPU times: user 0.17 s, sys: 0.02 s, total: 0.19 s Wall time: 0.19 s CPU times: user 0.17 s, sys: 0.02 s, total: 0.19 s Wall time: 0.19 s CPU times: user 3.49 s, sys: 0.68 s, total: 4.17 s Wall time: 4.17 s _24 = True _24 = True ###################### i = 310 CPU times: user 0.91 s, sys: 0.36 s, total: 1.27 s Wall time: 1.27 s CPU times: user 0.91 s, sys: 0.36 s, total: 1.27 s Wall time: 1.27 s CPU times: user 30.18 s, sys: 6.47 s, total: 36.65 s Wall time: 36.65 s _27 = True _27 = True ###################### i = 312 CPU times: user 0.23 s, sys: 0.07 s, total: 0.30 s Wall time: 0.30 s CPU times: user 0.21 s, sys: 0.08 s, total: 0.29 s Wall time: 0.29 s CPU times: user 34.07 s, sys: 7.31 s, total: 41.39 s Wall time: 41.40 s _30 = True _30 = True ###################### i = 417 CPU times: user 0.01 s, sys: 0.00 s, total: 0.01 s Wall time: 0.01 s CPU times: user 0.01 s, sys: 0.00 s, total: 0.01 s Wall time: 0.01 s CPU times: user 74.05 s, sys: 6.54 s, total: 80.58 s Wall time: 80.62 s _33 = True _33 = True ###################### i = 456 CPU times: user 0.04 s, sys: 0.00 s, total: 0.04 s Wall time: 0.04 s CPU times: user 0.04 s, sys: 0.00 s, total: 0.05 s Wall time: 0.05 s CPU times: user 91.65 s, sys: 17.02 s, total: 108.66 s Wall time: 108.69 s _36 = True _36 = True ###################### i = 491 CPU times: user 4.06 s, sys: 0.94 s, total: 5.00 s Wall time: 5.00 s CPU times: user 4.00 s, sys: 0.95 s, total: 4.95 s Wall time: 4.95 s CPU times: user 144.18 s, sys: 31.28 s, total: 175.46 s Wall time: 175.48 s _39 = True _39 = True ###################### i = 513 CPU times: user 0.44 s, sys: 0.19 s, total: 0.63 s Wall time: 0.63 s CPU times: user 0.42 s, sys: 0.21 s, total: 0.62 s Wall time: 0.62 s CPU times: user 213.25 s, sys: 49.80 s, total: 263.05 s Wall time: 263.12 s _42 = True _42 = True ###################### i = 522 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 0.00 s CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 0.00 s CPU times: user 209.37 s, sys: 48.57 s, total: 257.93 s Wall time: 257.99 s _46 = True _46 = True ###################### i = 603 CPU times: user 0.24 s, sys: 0.02 s, total: 0.27 s Wall time: 0.27 s CPU times: user 0.22 s, sys: 0.06 s, total: 0.28 s Wall time: 0.29 s CPU times: user 230.83 s, sys: 57.76 s, total: 288.60 s Wall time: 288.69 s _50 = True _50 = True ###################### i = 662 CPU times: user 14.26 s, sys: 3.50 s, total: 17.76 s Wall time: 17.76 s CPU times: user 14.60 s, sys: 3.43 s, total: 18.03 s Wall time: 18.03 s CPU times: user 430.12 s, sys: 106.54 s, total: 536.66 s Wall time: 536.77 s _54 = True _54 = True ###################### i = 688 CPU times: user 1.95 s, sys: 0.86 s, total: 2.81 s Wall time: 2.81 s CPU times: user 1.98 s, sys: 0.82 s, total: 2.80 s Wall time: 2.80 s CPU times: user 559.77 s, sys: 128.93 s, total: 688.70 s Wall time: 688.82 s _58 = True _58 = True ###################### i = 697 CPU times: user 0.06 s, sys: 0.00 s, total: 0.06 s Wall time: 0.06 s CPU times: user 0.04 s, sys: 0.00 s, total: 0.04 s Wall time: 0.04 s CPU times: user 556.29 s, sys: 123.71 s, total: 680.00 s Wall time: 680.15 s _62 = True _62 = True ###################### i = 758 CPU times: user 0.17 s, sys: 0.00 s, total: 0.18 s Wall time: 0.18 s CPU times: user 0.20 s, sys: 0.01 s, total: 0.21 s Wall time: 0.21 s CPU times: user 585.18 s, sys: 144.59 s, total: 729.77 s Wall time: 729.88 s _65 = True _65 = True ###################### [snip] ================================ So, it seems that these powers could be improved a lot. My second function did not show much improvement in these cases, but I think it would in other (maybe extreme) examples. Unfortunately, I don't know enough to suggest a patch, but hopefully some one can find a quick way to improve those computations. Best to all, Luis --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---