Thanks. This works, but it is sooooo very slow :

sage: foo= (x0 + x1 + x2 + x3)^1;
sage.libs.symmetrica.all.t_POLYNOM_ELMSYM( foo )
e[1]  #immediate

sage: foo= (x0 + x1 + x2 + x3)^2;
sage.libs.symmetrica.all.t_POLYNOM_ELMSYM( foo )
e[1, 1] #also immediate

sage: foo= (x0 + x1 + x2 + x3)^3;
sage.libs.symmetrica.all.t_POLYNOM_ELMSYM( foo )
#nothing after several minutes, i had to go C-c (on a macbook)

My original polynomial just about fits on the screen, so needless to
say after 30 minutes i had nothing.

Is this normal ? Using groebner basis techniques my guess is that
things should not quite be that slow.
--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support-unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URL: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to