Jason Grout wrote: > > sage: x=polygen(QQ) > sage: A=matrix([[0,1,1],[2,2,-2],[-1,x,3]]) > sage: A.echelon_form() > > [ 2 2 -2] > [ 0 -1 -1] > [ 0 0 -x + 1] > >
Incidentally (while I'm still working on the echelon_form/hermite_form patch, where echelon_form will always assume that we want to assume the matrix is over a field), this gives one reason why having echelon_form not automatically assume the fraction field is nice: sage: x=polygen(QQ) sage: A=matrix([[0,1,1],[2,2,-2],[-1,x,3]]) sage: ring=A.base_ring() sage: field=ring.fraction_field() sage: A.echelon_form() [ 2 2 -2] [ 0 -1 -1] [ 0 0 -x + 1] sage: b=A.change_ring(field) sage: b.echelon_form() [1 0 0] [0 1 0] [0 0 1] Jason -- Jason Grout --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---