2009/10/2 Stefan Böttner <sboet...@tulane.edu>: > > If I define a polynomial > > f=(x^4+x^2+1)^2 > > and find the roots via > > f.roots() > > I get four roots each with multiplicity one. However, > > (f^2).roots() > > yields exactly the same answer: four roots with multiplicity one(!) > each. If f is a "simpler" polynomial, such as f=x^4+1, a correct > multiplicity is reported.
This was a bug in Maxima. It is fixed in Sage-4.1.2 which uses a newer version of Maxima: sage: f=(x^4+x^2+1)^2 sage: f.roots() [(-1/2*sqrt(I*sqrt(3) - 1)*sqrt(2), 2), (1/2*sqrt(I*sqrt(3) - 1)*sqrt(2), 2), (-1/2*sqrt(-I*sqrt(3) - 1)*sqrt(2), 2), (1/2*sqrt(-I*sqrt(3) - 1)*sqrt(2), 2)] Sage-4.1.2 is slated for release early next week. William --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---