2009/10/2 Stefan Böttner <sboet...@tulane.edu>:
>
> If I define a polynomial
>
> f=(x^4+x^2+1)^2
>
> and find the roots via
>
> f.roots()
>
> I get four roots each with multiplicity one. However,
>
> (f^2).roots()
>
> yields exactly the same answer: four roots with multiplicity one(!)
> each. If f is a "simpler" polynomial, such as f=x^4+1, a correct
> multiplicity is reported.

This was a bug in Maxima.  It is fixed in Sage-4.1.2 which uses a
newer version of Maxima:

sage: f=(x^4+x^2+1)^2
sage: f.roots()

[(-1/2*sqrt(I*sqrt(3) - 1)*sqrt(2), 2),
 (1/2*sqrt(I*sqrt(3) - 1)*sqrt(2), 2),
 (-1/2*sqrt(-I*sqrt(3) - 1)*sqrt(2), 2),
 (1/2*sqrt(-I*sqrt(3) - 1)*sqrt(2), 2)]


Sage-4.1.2 is slated for release early next week.

William

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support-unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URL: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to