Hi, I wrote a code in sage to construct a Low Dimensional model for the Magnetohydrodynamic equations to study dynamos etc... But the program crashes at different points on different machines with the following error:
Traceback (most recent call last): File "./LowD_model.py", line 158, in <module> du_x_dt.append(select_mode(RHS_Ux, l, m, n) ) File "./LowD_model.py", line 28, in select_mode val = (func*exp(-I*(l*x + m*y + n*z))).integrate(x,0,2*pi).integrate(y,0,2*pi).integrate(z,0,2*pi) File "expression.pyx", line 5700, in sage.symbolic.expression.Expression.integral (sage/symbolic/expression.cpp:24436) File "/opt/sage/sage/local/lib/python2.6/site-packages/sage/calculus/calculus.py", line 566, in integral result = expression._maxima_().integrate(v, a, b) File "/opt/sage/sage/local/lib/python2.6/site-packages/sage/interfaces/maxima.py", line 2003, in integral return I(var, min, max) File "/opt/sage/sage/local/lib/python2.6/site-packages/sage/interfaces/expect.py", line 1382, in __call__ return self._obj.parent().function_call(self._name, [self._obj] + list(args), kwds) File "/opt/sage/sage/local/lib/python2.6/site-packages/sage/interfaces/expect.py", line 1290, in function_call return self.new(s) File "/opt/sage/sage/local/lib/python2.6/site-packages/sage/interfaces/expect.py", line 1086, in new return self(code) File "/opt/sage/sage/local/lib/python2.6/site-packages/sage/interfaces/expect.py", line 1021, in __call__ return cls(self, x, name=name) File "/opt/sage/sage/local/lib/python2.6/site-packages/sage/interfaces/expect.py", line 1425, in __init__ raise TypeError, x TypeError: Error executing code in Maxima CODE: sage2436 : integrate(sage2432,sage2433,sage2434,sage2435)$ Maxima ERROR: Maxima encountered a Lisp error: Memory limit reached. Please jump to an outer point or quit program. Automatically continuing. To reenable the Lisp debugger set *debugger-hook* to nil. I'm attaching the entire code but the function where it crashed is the follows: def select_mode(func,l,m,n): val = (func*exp(-I*(l*x + m*y + n*z))).integrate(x,0,2*pi).integrate(y,0,2*pi).integrate(z,0,2*pi) return val/(8*pi**3) Also, I'd like to know if the symbolic computation backend for SAGE is Maxima, Pynac or Sympy? Or is it a combination of all the three? Will SAGE move to a single backend in the future? If this bug can't be fixed, is it suggested that I rewrite the code using the Sympy library? P.S If anyone is running the code, then please note that it takes a LOT of time. Thanking you, Mani chandra --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---
import sys from sage.all import * modes = []; N = 2 # Choose the modes for the model for i in range(-N,N+1): for j in range(-N,N+1): for k in range(-N,N+1): modes.append([i,j,k]) print "Number of modes = ", len(modes) nu, eta = var('nu, eta') x, y, z = var('x, y, z') ko = var('ko'); ko = 2 # Taylor-Green forcing f_x = sin(ko*x)*cos(ko*y)*cos(ko*z) f_y = -cos(ko*x)*sin(ko*y)*cos(ko*z) f_z = 0 def basis(l,m,n): return exp(I*(l*x + m*y + n*z)) def select_mode(func,l,m,n): val = (func*exp(-I*(l*x + m*y + n*z))).integrate(x,0,2*pi).integrate(y,0,2*pi).integrate(z,0,2*pi) return val/(8*pi**3) u_x = []; b_x = [] u_y = []; b_y = [] u_z = []; b_z = [] p = []; U_x = var('U_x'); U_x = 0 U_y = var('U_y'); U_y = 0 U_z = var('U_z'); U_z = 0 B_x = var('B_x'); B_x = 0 B_y = var('B_y'); B_y = 0 B_z = var('B_z'); B_z = 0 P = var('P'); P = 0 du_x_dt = []; db_x_dt = [] du_y_dt = []; db_y_dt = [] du_z_dt = []; db_z_dt = [] for i in range(len(modes)): u_x.append(var('u_x' + str(i))) u_y.append(var('u_y' + str(i))) u_z.append(var('u_z' + str(i))) b_x.append(var('b_x' + str(i))) b_y.append(var('b_y' + str(i))) b_z.append(var('b_z' + str(i))) p.append(var('p' + str(i))) # Solve u_z in terms of u_x and u_y using the divergence free condition. for i in range(len(modes)): l = modes[i][0] m = modes[i][1] n = modes[i][2] if (n!=0): u_z[i] = (-l*u_x[i] - m*u_y[i])/n b_z[i] = (-l*b_x[i] - m*b_y[i])/n elif (m!=0 and n==0): u_z[i] = 0 b_z[i] = 0 u_y[i] = -l*u_x[i]/m b_y[i] = -l*b_x[i]/m elif (m==0 and n==0): u_x[i] = 0 b_x[i] = 0 u_y[i] = 0 b_y[i] = 0 u_z[i] = 0 b_z[i] = 0 for i in range(len(modes)): l = modes[i][0] m = modes[i][1] n = modes[i][2] U_x = U_x + u_x[i]*basis(l,m,n) U_y = U_y + u_y[i]*basis(l,m,n) U_z = U_z + u_z[i]*basis(l,m,n) B_x = B_x + b_x[i]*basis(l,m,n) B_y = B_y + b_y[i]*basis(l,m,n) B_z = B_z + b_z[i]*basis(l,m,n) print "Computing Laplacian..." print " " laplacian_Ux = diff(U_x, x, 2) + diff(U_x, y, 2) + diff(U_x, z, 2) laplacian_Uy = diff(U_y, x, 2) + diff(U_y, y, 2) + diff(U_y, z, 2) laplacian_Uz = diff(U_z, x, 2) + diff(U_z, y, 2) + diff(U_z, z, 2) laplacian_Bx = diff(B_x, x, 2) + diff(B_x, y, 2) + diff(B_x, z, 2) laplacian_By = diff(B_y, x, 2) + diff(B_y, y, 2) + diff(B_y, z, 2) laplacian_Bz = diff(B_z, x, 2) + diff(B_z, y, 2) + diff(B_z, z, 2) print "Laplacian computation complete." print " " print "Computing non-linear terms..." print " " nlin_Ux_u = U_x*U_x.diff(x) + U_y*U_x.diff(y) + U_z*U_x.diff(z) nlin_Ux_b = B_x*B_x.diff(x) + B_y*B_x.diff(y) + B_z*B_x.diff(z) nlin_Uy_u = U_x*U_y.diff(x) + U_y*U_y.diff(y) + U_z*U_y.diff(z) nlin_Uy_b = B_x*B_y.diff(x) + B_y*B_y.diff(y) + B_z*B_y.diff(z) nlin_Uz_u = U_x*U_z.diff(x) + U_y*U_z.diff(y) + U_z*U_z.diff(z) nlin_Uz_b = B_x*B_z.diff(x) + B_y*B_z.diff(y) + B_z*B_z.diff(z) nlin_Bx_u = B_x*U_x.diff(x) + B_y*U_x.diff(y) + B_z*U_x.diff(z) nlin_Bx_b = U_x*B_x.diff(x) + U_y*B_x.diff(y) + U_z*B_x.diff(z) nlin_By_u = B_x*U_y.diff(x) + B_y*U_y.diff(y) + B_z*U_y.diff(z) nlin_By_b = U_x*B_y.diff(x) + U_y*B_y.diff(y) + U_z*B_y.diff(z) nlin_Bz_u = B_x*U_z.diff(x) + B_y*U_z.diff(y) + B_z*U_z.diff(z) nlin_Bz_b = U_x*B_z.diff(x) + U_y*B_z.diff(y) + U_z*B_z.diff(z) print "Computation of non-linear terms complete." print " " # Solve the Poisson equation for pressure. print "Computing pressure..." print " " div_nlin_U = nlin_Ux_u.diff(x) + nlin_Uy_u.diff(y) + nlin_Uz_u.diff(z) for i in range(len(modes)): l = modes[i][0] m = modes[i][0] n = modes[i][0] k_sqr = l**2 + m**2 + n**2 print "Computing pressure mode", modes[i] if (k_sqr!=0): p[i] = -select_mode(div_nlin_U, l, m, n)/(l**2 + m**2 + n**2) else: p[i] = 0 P = P + p[i] print " " print "Pressure computation complete." print " " RHS_Ux = -nlin_Ux_u + nlin_Ux_b + nu*laplacian_Ux - P.diff(x) + f_x RHS_Uy = -nlin_Uy_u + nlin_Uy_b + nu*laplacian_Uy - P.diff(y) + f_y RHS_Uz = -nlin_Uz_u + nlin_Uz_b + nu*laplacian_Uz - P.diff(z) + f_z RHS_Bx = -nlin_Bx_b + nlin_Bx_u + eta*laplacian_Bx RHS_By = -nlin_By_b + nlin_By_u + eta*laplacian_By RHS_Bz = -nlin_Bz_b + nlin_Bz_u + eta*laplacian_Bz for i in range(len(modes)): l = modes[i][0] m = modes[i][1] n = modes[i][2] print "Extracting mode ", modes[i] du_x_dt.append(select_mode(RHS_Ux, l, m, n) ) du_y_dt.append(select_mode(RHS_Uy, l, m, n) ) du_z_dt.append(select_mode(RHS_Uz, l, m, n) ) db_x_dt.append(select_mode(RHS_Bx, l, m, n) ) db_y_dt.append(select_mode(RHS_By, l, m, n) ) db_z_dt.append(select_mode(RHS_Bz, l, m, n) ) print "Low dimensional model construction complete."