I guess I was trying to say that it would be nice if that could be done more easily, like if one could do
sage: var('x,y,z') sage: fs = [x^2*y - y, sin(z)*x*y^2 - y*sin(z)] sage: SR.groebner_basis(fs, [x,y]) -Marshall On Jul 22, 3:47 am, Martin Albrecht <m...@informatik.uni-bremen.de> wrote: > On Tuesday 21 July 2009, Marshall Hampton wrote: > > > I would recommend looking at how Mathematica handles this sort of > > thing. One of the things I miss is its ability to selectively treat > > different variables as either part of a coefficient ring or as > > multivariate polynomials. For example: > > GroebnerBasis[{x^2*y - y, Sin[z]*x*y^2 - y*Sin[z]}, {x, y}] > > {-y Sin[z] + y^3 Sin[z], x y Sin[z] - y^2 Sin[z], -y + x^2 y} > > > GroebnerBasis[{x^2*y - y, Sin[z]*x*y^2 - y*Sin[z]}, {y}] > > {-y + x^2 y, -x y Sin[z] + y^2 Sin[z]} > > > Some sort of similar syntax might be required with our symbolic ring. > > sage: P.<sina,cosb,a,b> = PolynomialRing(QQ) > sage: K = Frac(P) > sage: R.<x,y,z> = K[] > sage: I = Ideal([R.random_element() for _ in range(R.ngens())]); I > sage: I.groebner_basis() # wait :) > > Cheers, > Martin > > -- > name: Martin Albrecht > _pgp:http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x8EF0DC99 > _otr: 47F43D1A 5D68C36F 468BAEBA 640E8856 D7951CCF > _www:http://www.informatik.uni-bremen.de/~malb > _jab: martinralbre...@jabber.ccc.de --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---