I guess I was trying to say that it would be nice if that could be
done more easily, like if one could do

sage: var('x,y,z')
sage: fs  = [x^2*y - y, sin(z)*x*y^2 - y*sin(z)]
sage: SR.groebner_basis(fs, [x,y])

-Marshall


On Jul 22, 3:47 am, Martin Albrecht <m...@informatik.uni-bremen.de>
wrote:
> On Tuesday 21 July 2009, Marshall Hampton wrote:
>
> > I would recommend looking at how Mathematica handles this sort of
> > thing.  One of the things I miss is its ability to selectively treat
> > different variables as either part of a coefficient ring or as
> > multivariate polynomials.  For example:
> > GroebnerBasis[{x^2*y - y, Sin[z]*x*y^2 - y*Sin[z]}, {x, y}]
> > {-y Sin[z] + y^3 Sin[z], x y Sin[z] - y^2 Sin[z], -y + x^2 y}
>
> > GroebnerBasis[{x^2*y - y, Sin[z]*x*y^2 - y*Sin[z]}, {y}]
> > {-y + x^2 y, -x y Sin[z] + y^2 Sin[z]}
>
> > Some sort of similar syntax might be required with our symbolic ring.
>
> sage: P.<sina,cosb,a,b> = PolynomialRing(QQ)
> sage: K = Frac(P)
> sage: R.<x,y,z> = K[]
> sage: I = Ideal([R.random_element() for _ in range(R.ngens())]); I
> sage: I.groebner_basis() # wait :)
>
> Cheers,
> Martin
>
> --
> name: Martin Albrecht
> _pgp:http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x8EF0DC99
> _otr: 47F43D1A 5D68C36F 468BAEBA 640E8856 D7951CCF
> _www:http://www.informatik.uni-bremen.de/~malb
> _jab: martinralbre...@jabber.ccc.de
--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support-unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to