Hi Santanu,

On Wed, Jul 15, 2009 at 9:46 PM, Santanu
Sarkar<sarkar.santanu....@gmail.com> wrote:
> Suppose  f=2*x^2+3*x+1 is a polynomial in x. How efficiently we
> can calculate f^10 modulo 24?

For the ring of polynomials with coefficients over ZZ:

----------------------------------------------------------------------
| Sage Version 4.1, Release Date: 2009-07-09                         |
| Type notebook() for the GUI, and license() for information.        |
----------------------------------------------------------------------
sage: K.<x> = ZZ["x"]
sage: f = 2*x^2 + 3*x + 1
sage: %timeit power_mod(f, 10, 24)
10000 loops, best of 3: 93.7 µs per loop
sage: %time power_mod(f, 10, 24)
CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
Wall time: 0.00 s
16*x^20 + 8*x^18 + 12*x^12 + 12*x^11 + 21*x^10 + 6*x^9 + 21*x^8 +
18*x^6 + 12*x^5 + 6*x^4 + 12*x^3 + 17*x^2 + 6*x + 1

Here the coefficient ring is QQ:

sage: K.<x> = QQ["x"]
sage: f = 2*x^2 + 3*x + 1
sage: %timeit power_mod(f, 10, 24)
1000 loops, best of 3: 374 µs per loop
sage: %time power_mod(f, 10, 24)
CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
Wall time: 0.00 s
0

So it looks to be pretty fast :-)

-- 
Regards
Minh Van Nguyen

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support-unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to