Let me give some more details about my question: i have a number field K, and a ring of polynomials over it, R1. I also have a ring homomorphism from K to QQbar (which actually makes all sense from a mathematical point of view), and a ring of polynomials R2 over QQbar.
All this should give a map from R1 to R2, but when i try to construct it in sage, i can't: sage: alpha=symbolic_expression(x^2+x+1).roots (ring=QQbar,multiplicities=False) sage: K.<a>=NumberField(x^2+x+1) sage: R1.<x,y>=K[] sage: f=R1(x*y-a*y+x) sage: H=K.hom([alpha[0]],QQbar) sage: H(a) -0.500000000000000? - 0.866025403784439?*I sage: R2.<x,y>=QQbar[] sage: H(f) ERROR: An unexpected error occurred while tokenizing input The following traceback may be corrupted or invalid The error message is: ('EOF in multi-line statement', (920, 0)) --------------------------------------------------------------------------- TypeError Traceback (most recent call last) /home/mmarco/<ipython console> in <module>() /home/mmarco/sage/local/lib/python2.5/site-packages/sage/categories/ map.so in sage.categories.map.Map.__call__ (sage/categories/map.c:3227) () TypeError: x*y + x + (-a)*y must be coercible into Number Field in a with defining polynomial x^2 + x + 1 sage: R1.hom([x,y],R2) --------------------------------------------------------------------------- TypeError Traceback (most recent call last) /home/mmarco/<ipython console> in <module>() /home/mmarco/sage/local/lib/python2.5/site-packages/sage/structure/ parent_gens.so in sage.structure.parent_gens.ParentWithGens.hom (sage/ structure/parent_gens.c:3785)() /home/mmarco/sage/local/lib/python2.5/site-packages/sage/rings/ homset.pyc in __call__(self, im_gens, check) 79 return self._coerce_impl(im_gens) 80 except TypeError: ---> 81 raise TypeError, "images do not define a valid homomorphism" 82 83 TypeError: images do not define a valid homomorphism Actually, both error messages are correct (H is not defined in R1, and there is no natural coercion from K to QQbar), but i have not found any other way to build a homomorphism that involves the variables AND the base ring. --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---