On 17 Giu, 09:24, Robert Bradshaw <rober...@math.washington.edu>
wrote:
> Thanks for the wiki and summary. In my (brief) perusal of the  
> options, Unum sounds like the best fit to me too.
>

I am glad I can give something to this community, I hope this has been
valuable to somebody.

> On Jun 15, 2009, at 3:27 AM, William Stein wrote:
>
> > There is also the fact that Sage has rings, elements, parents, a
> > coercion model, etc. which might throw a monkey wrench into everything
> > (I don't know).
>
> I'm hoping it's able to store the "numeric" part as a black box, and  
> just multiplies it by constants to convert. Of course, I'm not sure  
> if everything would quickly be reduced to 53-bit floating point  
> results precision...
>

Thank you for investigating this!!

> sage: var('x,y')
> (x, y)
> sage: (x * unum.units.MILE) / (y * unum.units.S)
> x/y [mile/s]
> sage: (x+90) * unum.units.MIN + (x+pi) * unum.units.H
> pi + 1.01666666666667*x + 1.50000000000000 [h]
>
> sage: R.<t> = QQ[[]]
> sage: foo = (1/(t+1)) * unum.units.KG; foo
> 1.0 - 1.0*t + 1.0*t^2 - 1.0*t^3 + 1.0*t^4 - 1.0*t^5 + 1.0*t^6 -  
> 1.0*t^7 + 1.0*t^8 - 1.0*t^9 + 1.0*t^10 - 1.0*t^11 + 1.0*t^12 -  
> 1.0*t^13 + 1.0*t^14 - 1.0*t^15 + 1.0*t^16 - 1.0*t^17 + 1.0*t^18 -  
> 1.0*t^19 + O(t^20) [kg]
> sage: getattr(foo, 'as')(unum.units.TON)
> 0.001 - 0.001*t + 0.001*t^2 - 0.001*t^3 + 0.001*t^4 - 0.001*t^5 +  
> 0.001*t^6 - 0.001*t^7 + 0.001*t^8 - 0.001*t^9 + 0.001*t^10 -  
> 0.001*t^11 + 0.001*t^12 - 0.001*t^13 + 0.001*t^14 - 0.001*t^15 +  
> 0.001*t^16 - 0.001*t^17 + 0.001*t^18 - 0.001*t^19 + O(t^20) [t]
>
> Not bad.
>
> - Robert
--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support-unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to