Here's the code I'm using: (theta_array is just a dummy for the real thing, but the errors are the same)
theta_array = [(0,0),(1,2),(pi/2,pi),(pi,4),(3*pi/2,5),(2*pi,2*pi)] s = spline(theta_array) ellipse(x) = e^(i*x)-.5*e^(-i*x) z(t) = ellipse(t) zprime(t) = derivative(z) def u(x,b): return real(zprime(x)/(z(x)-b)*e^(i*s(x))) def v(x,b): return imag(zprime(x)/(z(x)-b)*e^(i*s(x))) def f(b): return 1/(2*pi*i)*(integral_numerical(u(x,b),0,2*pi)+ i * integral_numerical(v(x,b),0,2*pi)) f(0) I'm trying to compute the complex integral from 0 to 2*pi of zprime(t)/ (z(t)-b)*e^(i*s(t))dt I get this error: Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/evlutte/.sage/sage_notebook/worksheets/admin/27/code/ 34.py", line 21, in <module> f(_sage_const_0 ) File "/home/evlutte/opt/sage-3.2.3/local/lib/python2.5/site-packages/ SQLAlchemy-0.4.6-py2.5.egg/", line 1, in <module> File "/home/evlutte/.sage/sage_notebook/worksheets/admin/27/code/ 34.py", line 19, in f return _sage_const_1 /(_sage_const_2 *pi*i)*(integral_numerical(u (x,b),_sage_const_0 ,_sage_const_2 *pi)+ i * integral_numerical(v (x,b),_sage_const_0 ,_sage_const_2 *pi)) File "/home/evlutte/.sage/sage_notebook/worksheets/admin/27/code/ 34.py", line 13, in u return real(zprime(x)/(z(x)-b)*e**(i*s(x))) File "interpolation.pyx", line 97, in sage.gsl.interpolation.Spline.__call__ (sage/gsl/interpolation.c:1598) File "expression.pyx", line 869, in sage.symbolic.expression.Expression.__float__ (sage/symbolic/ expression.cpp:5679) TypeError: float() argument must be a string or a number I guess that sage is trying to evaluate the integral before substituting the value for b. Is this correct? How can I get around this? Thanks for any help you can give. Ethan --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---