Its a puzzling pattern as to which multiplicities are incorrect: sage: z = var('z') sage: f5 = (z^5-1)^2 sage: f5.roots()
[(e^(2/5*I*pi), 2), (e^(4/5*I*pi), 2), (e^(-4/5*I*pi), 1), (e^(-2/5*I*pi), 1), (1, 2)] Odd, very odd. I guess one of us should write about this on the maxima list. -Marshall On Jun 5, 2:37 pm, simon.k...@uni-jena.de wrote: > Oops. > > On 5 Jun., 21:32, simon.k...@uni-jena.de wrote: > > > sage: E=(z^3-1)^3 > > sage: e = E==0 > > sage: m=e._maxima_() > > sage: m.solve(z).str() > > '[z=(sqrt(3)*%i-1)/2,z=-(sqrt(3)*%i+1)/2,z=1]' > > Here I forgot to copy-and-paste the line > sage: P = m.parent() > > > sage: P.get('multiplicities') > > '[1,1,3]' > > Sorry, it seems that I am a bit distracted today. --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---