Its a puzzling pattern as to which multiplicities are incorrect:

sage: z = var('z')
sage: f5 = (z^5-1)^2
sage: f5.roots()

[(e^(2/5*I*pi), 2),
 (e^(4/5*I*pi), 2),
 (e^(-4/5*I*pi), 1),
 (e^(-2/5*I*pi), 1),
 (1, 2)]

Odd, very odd.  I guess one of us should write about this on the
maxima list.

-Marshall

On Jun 5, 2:37 pm, simon.k...@uni-jena.de wrote:
> Oops.
>
> On 5 Jun., 21:32, simon.k...@uni-jena.de wrote:
>
> >   sage: E=(z^3-1)^3
> >   sage: e = E==0
> >   sage: m=e._maxima_()
> >   sage: m.solve(z).str()
> >   '[z=(sqrt(3)*%i-1)/2,z=-(sqrt(3)*%i+1)/2,z=1]'
>
> Here I forgot to copy-and-paste the line
>   sage: P = m.parent()
>
> >   sage: P.get('multiplicities')
> >   '[1,1,3]'
>
> Sorry, it seems that I am a bit distracted today.
--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support-unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to