Transcript below.  Ironically, no error is produced by the related
command
sage: time f=D[6].q_eigenform(7,'a')
 rje
*************************************************************************************************

rev...@sobolev:~% sage
----------------------------------------------------------------------
| Sage Version 3.4.2, Release Date: 2009-05-05                       |
| Type notebook() for the GUI, and license() for information.        |
----------------------------------------------------------------------
sage: time G=DirichletGroup(525,CyclotomicField(4));X=G.list();Y=X
[15];
M=ModularSymbols(Y,3,sign=1)
CPU times: user 94.43 s, sys: 0.10 s, total: 94.53 s
Wall time: 94.52 s
sage: M
Modular Symbols space of dimension 160 and level 525, weight 3,
character
[-1, -zeta4, -1], sign 1, over Cyclotomic Field of order 4 and degree
2
sage: time D=M.cuspidal_subspace().new_subspace().decomposition()
CPU times: user 6833.46 s, sys: 303.90 s, total: 7137.37 s
Wall time: 7136.81 s
sage: D

[
Modular Symbols subspace of dimension 2 of Modular Symbols space of
dimension 160 and level 525, weight 3, character [-1, -zeta4, -1],
sign 1,
over Cyclotomic Field of order 4 and degree 2,
Modular Symbols subspace of dimension 2 of Modular Symbols space of
dimension 160 and level 525, weight 3, character [-1, -zeta4, -1],
sign 1,
over Cyclotomic Field of order 4 and degree 2,
Modular Symbols subspace of dimension 4 of Modular Symbols space of
dimension 160 and level 525, weight 3, character [-1, -zeta4, -1],
sign 1,
over Cyclotomic Field of order 4 and degree 2,
Modular Symbols subspace of dimension 4 of Modular Symbols space of
dimension 160 and level 525, weight 3, character [-1, -zeta4, -1],
sign 1,
over Cyclotomic Field of order 4 and degree 2,
Modular Symbols subspace of dimension 4 of Modular Symbols space of
dimension 160 and level 525, weight 3, character [-1, -zeta4, -1],
sign 1,
over Cyclotomic Field of order 4 and degree 2,
Modular Symbols subspace of dimension 4 of Modular Symbols space of
dimension 160 and level 525, weight 3, character [-1, -zeta4, -1],
sign 1,
over Cyclotomic Field of order 4 and degree 2,
Modular Symbols subspace of dimension 8 of Modular Symbols space of
dimension 160 and level 525, weight 3, character [-1, -zeta4, -1],
sign 1,
over Cyclotomic Field of order 4 and degree 2,
Modular Symbols subspace of dimension 8 of Modular Symbols space of
dimension 160 and level 525, weight 3, character [-1, -zeta4, -1],
sign 1,
over Cyclotomic Field of order 4 and degree 2,
Modular Symbols subspace of dimension 16 of Modular Symbols space of
dimension 160 and level 525, weight 3, character [-1, -zeta4, -1],
sign 1,
over Cyclotomic Field of order 4 and degree 2,
Modular Symbols subspace of dimension 40 of Modular Symbols space of
dimension 160 and level 525, weight 3, character [-1, -zeta4, -1],
sign 1,
over Cyclotomic Field of order 4 and degree 2
]
sage: time f=D[4].q_eigenform(7,'a')       #HERE IS THE OFFENDING
COMMAND
---------------------------------------------------------------------------
IndexError                                Traceback (most recent call
last)

/base/people/revans/<ipython console> in <module>()

/usr/local/sage/local/lib/python2.5/site-packages/IPython/iplib.pyc
in
ipmagic(self, arg_s)
    951         else:
    952             magic_args = self.var_expand(magic_args,1)
--> 953             return fn(magic_args)
    954
    955     def ipalias(self,arg_s):

/usr/local/sage/local/lib/python2.5/site-packages/IPython/Magic.pyc
in
magic_time(self, parameter_s)
   1909         else:
   1910             st = clk()
-> 1911             exec code in glob
   1912             end = clk()
   1913             out = None

/base/people/revans/<timed exec> in <module>()

/usr/local/sage/local/lib/python2.5/site-packages/sage/modular/modsym/
space.pyc
in q_eigenform(self, prec, names)
   1077                     return
self.plus_submodule(compute_dual=True).q_eigenform(prec, names)
   1078                 raise ArithmeticError, "self must be simple."
-> 1079             a2 = self.eigenvalue(2, names)
   1080             R = PowerSeriesRing(a2.parent(), "q")
   1081             q = R.gen(0)

/usr/local/sage/local/lib/python2.5/site-packages/sage/modular/hecke/
module.pyc
in eigenvalue(self, n, name)
    907
    908         if (arith.is_prime(n) or n==1):
--> 909             Tn_e = self._eigen_nonzero_element(n)
    910             an = self._element_eigenvalue(Tn_e, name=name)
    911             dict_set(ev, n, name, an)

/usr/local/sage/local/lib/python2.5/site-packages/sage/modular/hecke/
module.pyc
in _eigen_nonzero_element(self, n)
    394             raise ArithmeticError, "the rank of self must be
positive"
    395         A = self.ambient_hecke_module()
--> 396         i = self._eigen_nonzero()
    397         return A._hecke_image_of_ith_basis_vector(n, i)
    398

/usr/local/sage/local/lib/python2.5/site-packages/sage/modular/hecke/
module.pyc
in _eigen_nonzero(self)
    375             pass
    376         A = self.ambient_hecke_module()
--> 377         V = self.dual_free_module()
    378         B = V.basis()
    379         for i in range(V.degree()):

/usr/local/sage/local/lib/python2.5/site-packages/sage/modular/hecke/
submodule.pyc
in dual_free_module(self, bound, anemic, use_star)
    401             f = self.hecke_polynomial(p)
    402             T = A.dual_hecke_matrix(p)
--> 403             V = T.kernel_on(V, poly=f, check=False)
    404             if V.dimension() <= self.dimension():
    405                 break

/usr/local/sage/local/lib/python2.5/site-packages/sage/matrix/
matrix2.so in
sage.matrix.matrix2.Matrix.kernel_on (sage/matrix/matrix2.c:11763)()

/usr/local/sage/local/lib/python2.5/site-packages/sage/rings/
polynomial/polynomial_element.so
in sage.rings.polynomial.polynomial_element.Polynomial.__call__
(sage/rings/polynomial/polynomial_element.c:6824)()

/usr/local/sage/local/lib/python2.5/site-packages/sage/rings/
polynomial/polynomial_compiled.so
in
sage.rings.polynomial.polynomial_compiled.CompiledPolynomialFunction.eval
(sage/rings/polynomial/polynomial_compiled.c:1254)()

/usr/local/sage/local/lib/python2.5/site-packages/sage/rings/
polynomial/polynomial_compiled.so
in sage.rings.polynomial.polynomial_compiled.pd_eval
(sage/rings/polynomial/polynomial_compiled.c:2296)()

/usr/local/sage/local/lib/python2.5/site-packages/sage/rings/
polynomial/polynomial_compiled.so
in sage.rings.polynomial.polynomial_compiled.mul_pd.eval
(sage/rings/polynomial/polynomial_compiled.c:4111)()

/usr/local/sage/local/lib/python2.5/site-packages/sage/rings/
polynomial/polynomial_compiled.so
in sage.rings.polynomial.polynomial_compiled.pd_eval
(sage/rings/polynomial/polynomial_compiled.c:2296)()

/usr/local/sage/local/lib/python2.5/site-packages/sage/rings/
polynomial/polynomial_compiled.so
in sage.rings.polynomial.polynomial_compiled.sqr_pd.eval
(sage/rings/polynomial/polynomial_compiled.c:3378)()

/usr/local/sage/local/lib/python2.5/site-packages/sage/rings/
polynomial/polynomial_compiled.so
in sage.rings.polynomial.polynomial_compiled.pd_eval
(sage/rings/polynomial/polynomial_compiled.c:2296)()

/usr/local/sage/local/lib/python2.5/site-packages/sage/rings/
polynomial/polynomial_compiled.so
in sage.rings.polynomial.polynomial_compiled.sqr_pd.eval
(sage/rings/polynomial/polynomial_compiled.c:3389)()

/usr/local/sage/local/lib/python2.5/site-packages/sage/structure/
element.so
in sage.structure.element.Matrix.__mul__ (sage/structure/element.c:
12803)()

/usr/local/sage/local/lib/python2.5/site-packages/sage/matrix/
matrix_cyclo_dense.so
in
sage.matrix.matrix_cyclo_dense.Matrix_cyclo_dense._matrix_times_matrix_
(sage/matrix/matrix_cyclo_dense.cpp:6167)()

/usr/local/sage/local/lib/python2.5/site-packages/sage/matrix/
matrix_integer_dense.so
in sage.matrix.matrix_integer_dense._lift_crt
(sage/matrix/matrix_integer_dense.c:35969)()

IndexError: list index out of range

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support-unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to