Transcript below. Ironically, no error is produced by the related command sage: time f=D[6].q_eigenform(7,'a') rje *************************************************************************************************
rev...@sobolev:~% sage ---------------------------------------------------------------------- | Sage Version 3.4.2, Release Date: 2009-05-05 | | Type notebook() for the GUI, and license() for information. | ---------------------------------------------------------------------- sage: time G=DirichletGroup(525,CyclotomicField(4));X=G.list();Y=X [15]; M=ModularSymbols(Y,3,sign=1) CPU times: user 94.43 s, sys: 0.10 s, total: 94.53 s Wall time: 94.52 s sage: M Modular Symbols space of dimension 160 and level 525, weight 3, character [-1, -zeta4, -1], sign 1, over Cyclotomic Field of order 4 and degree 2 sage: time D=M.cuspidal_subspace().new_subspace().decomposition() CPU times: user 6833.46 s, sys: 303.90 s, total: 7137.37 s Wall time: 7136.81 s sage: D [ Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 160 and level 525, weight 3, character [-1, -zeta4, -1], sign 1, over Cyclotomic Field of order 4 and degree 2, Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 160 and level 525, weight 3, character [-1, -zeta4, -1], sign 1, over Cyclotomic Field of order 4 and degree 2, Modular Symbols subspace of dimension 4 of Modular Symbols space of dimension 160 and level 525, weight 3, character [-1, -zeta4, -1], sign 1, over Cyclotomic Field of order 4 and degree 2, Modular Symbols subspace of dimension 4 of Modular Symbols space of dimension 160 and level 525, weight 3, character [-1, -zeta4, -1], sign 1, over Cyclotomic Field of order 4 and degree 2, Modular Symbols subspace of dimension 4 of Modular Symbols space of dimension 160 and level 525, weight 3, character [-1, -zeta4, -1], sign 1, over Cyclotomic Field of order 4 and degree 2, Modular Symbols subspace of dimension 4 of Modular Symbols space of dimension 160 and level 525, weight 3, character [-1, -zeta4, -1], sign 1, over Cyclotomic Field of order 4 and degree 2, Modular Symbols subspace of dimension 8 of Modular Symbols space of dimension 160 and level 525, weight 3, character [-1, -zeta4, -1], sign 1, over Cyclotomic Field of order 4 and degree 2, Modular Symbols subspace of dimension 8 of Modular Symbols space of dimension 160 and level 525, weight 3, character [-1, -zeta4, -1], sign 1, over Cyclotomic Field of order 4 and degree 2, Modular Symbols subspace of dimension 16 of Modular Symbols space of dimension 160 and level 525, weight 3, character [-1, -zeta4, -1], sign 1, over Cyclotomic Field of order 4 and degree 2, Modular Symbols subspace of dimension 40 of Modular Symbols space of dimension 160 and level 525, weight 3, character [-1, -zeta4, -1], sign 1, over Cyclotomic Field of order 4 and degree 2 ] sage: time f=D[4].q_eigenform(7,'a') #HERE IS THE OFFENDING COMMAND --------------------------------------------------------------------------- IndexError Traceback (most recent call last) /base/people/revans/<ipython console> in <module>() /usr/local/sage/local/lib/python2.5/site-packages/IPython/iplib.pyc in ipmagic(self, arg_s) 951 else: 952 magic_args = self.var_expand(magic_args,1) --> 953 return fn(magic_args) 954 955 def ipalias(self,arg_s): /usr/local/sage/local/lib/python2.5/site-packages/IPython/Magic.pyc in magic_time(self, parameter_s) 1909 else: 1910 st = clk() -> 1911 exec code in glob 1912 end = clk() 1913 out = None /base/people/revans/<timed exec> in <module>() /usr/local/sage/local/lib/python2.5/site-packages/sage/modular/modsym/ space.pyc in q_eigenform(self, prec, names) 1077 return self.plus_submodule(compute_dual=True).q_eigenform(prec, names) 1078 raise ArithmeticError, "self must be simple." -> 1079 a2 = self.eigenvalue(2, names) 1080 R = PowerSeriesRing(a2.parent(), "q") 1081 q = R.gen(0) /usr/local/sage/local/lib/python2.5/site-packages/sage/modular/hecke/ module.pyc in eigenvalue(self, n, name) 907 908 if (arith.is_prime(n) or n==1): --> 909 Tn_e = self._eigen_nonzero_element(n) 910 an = self._element_eigenvalue(Tn_e, name=name) 911 dict_set(ev, n, name, an) /usr/local/sage/local/lib/python2.5/site-packages/sage/modular/hecke/ module.pyc in _eigen_nonzero_element(self, n) 394 raise ArithmeticError, "the rank of self must be positive" 395 A = self.ambient_hecke_module() --> 396 i = self._eigen_nonzero() 397 return A._hecke_image_of_ith_basis_vector(n, i) 398 /usr/local/sage/local/lib/python2.5/site-packages/sage/modular/hecke/ module.pyc in _eigen_nonzero(self) 375 pass 376 A = self.ambient_hecke_module() --> 377 V = self.dual_free_module() 378 B = V.basis() 379 for i in range(V.degree()): /usr/local/sage/local/lib/python2.5/site-packages/sage/modular/hecke/ submodule.pyc in dual_free_module(self, bound, anemic, use_star) 401 f = self.hecke_polynomial(p) 402 T = A.dual_hecke_matrix(p) --> 403 V = T.kernel_on(V, poly=f, check=False) 404 if V.dimension() <= self.dimension(): 405 break /usr/local/sage/local/lib/python2.5/site-packages/sage/matrix/ matrix2.so in sage.matrix.matrix2.Matrix.kernel_on (sage/matrix/matrix2.c:11763)() /usr/local/sage/local/lib/python2.5/site-packages/sage/rings/ polynomial/polynomial_element.so in sage.rings.polynomial.polynomial_element.Polynomial.__call__ (sage/rings/polynomial/polynomial_element.c:6824)() /usr/local/sage/local/lib/python2.5/site-packages/sage/rings/ polynomial/polynomial_compiled.so in sage.rings.polynomial.polynomial_compiled.CompiledPolynomialFunction.eval (sage/rings/polynomial/polynomial_compiled.c:1254)() /usr/local/sage/local/lib/python2.5/site-packages/sage/rings/ polynomial/polynomial_compiled.so in sage.rings.polynomial.polynomial_compiled.pd_eval (sage/rings/polynomial/polynomial_compiled.c:2296)() /usr/local/sage/local/lib/python2.5/site-packages/sage/rings/ polynomial/polynomial_compiled.so in sage.rings.polynomial.polynomial_compiled.mul_pd.eval (sage/rings/polynomial/polynomial_compiled.c:4111)() /usr/local/sage/local/lib/python2.5/site-packages/sage/rings/ polynomial/polynomial_compiled.so in sage.rings.polynomial.polynomial_compiled.pd_eval (sage/rings/polynomial/polynomial_compiled.c:2296)() /usr/local/sage/local/lib/python2.5/site-packages/sage/rings/ polynomial/polynomial_compiled.so in sage.rings.polynomial.polynomial_compiled.sqr_pd.eval (sage/rings/polynomial/polynomial_compiled.c:3378)() /usr/local/sage/local/lib/python2.5/site-packages/sage/rings/ polynomial/polynomial_compiled.so in sage.rings.polynomial.polynomial_compiled.pd_eval (sage/rings/polynomial/polynomial_compiled.c:2296)() /usr/local/sage/local/lib/python2.5/site-packages/sage/rings/ polynomial/polynomial_compiled.so in sage.rings.polynomial.polynomial_compiled.sqr_pd.eval (sage/rings/polynomial/polynomial_compiled.c:3389)() /usr/local/sage/local/lib/python2.5/site-packages/sage/structure/ element.so in sage.structure.element.Matrix.__mul__ (sage/structure/element.c: 12803)() /usr/local/sage/local/lib/python2.5/site-packages/sage/matrix/ matrix_cyclo_dense.so in sage.matrix.matrix_cyclo_dense.Matrix_cyclo_dense._matrix_times_matrix_ (sage/matrix/matrix_cyclo_dense.cpp:6167)() /usr/local/sage/local/lib/python2.5/site-packages/sage/matrix/ matrix_integer_dense.so in sage.matrix.matrix_integer_dense._lift_crt (sage/matrix/matrix_integer_dense.c:35969)() IndexError: list index out of range --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---