Hi Chris,

On Thu, Mar 19, 2009 at 8:17 AM, Chris Godsil <cgod...@uwaterloo.ca> wrote:
>
> I want to compute determinants of matrix polynomials, for matrices up
> to 20 x 20, say.
> The attached transcript seems to indicate 9 or 10 might be my limit.
> (Or it's late
> and I am being stupd?)
>
> ----------------------------------------------------------------------
> | Sage Version 3.4, Release Date:
> 2009-03-11                             |
> | Type notebook() for the GUI, and license() for information.        |
> ----------------------------------------------------------------------
> # intel mac pro, binary distribution
>
> sage: P = graphs.PetersenGraph()
> sage: P.delete_edge([0,1])
> sage: P.degree()
> [2, 2, 3, 3, 3, 3, 3, 3, 3, 3]
> sage: P
> Petersen graph: Graph on 10 vertices ## but P is not the Petersen
> graph now
> sage: A = P.am()
> sage: Id = identity_matrix(10)
> sage: R.<t> = QQ[]
> sage: (t+1)^5
> t^5 + 5*t^4 + 10*t^3 + 10*t^2 + 5*t + 1
> sage: M = t*Id - A; M
>
> [ t  0  0  0 -1 -1  0  0  0  0]
> [ 0  t -1  0  0  0 -1  0  0  0]
> [ 0 -1  t -1  0  0  0 -1  0  0]
> [ 0  0 -1  t -1  0  0  0 -1  0]
> [-1  0  0 -1  t  0  0  0  0 -1]
> [-1  0  0  0  0  t  0 -1 -1  0]
> [ 0 -1  0  0  0  0  t  0 -1 -1]
> [ 0  0 -1  0  0 -1  0  t  0 -1]
> [ 0  0  0 -1  0 -1 -1  0  t  0]
> [ 0  0  0  0 -1  0 -1 -1  0  t]
> sage: M.det()  ## and sage hangs

Well, it hangs for a while and then gives me this:

sage: M.det()
t^10 - 14*t^8 + 65*t^6 - 16*t^5 - 128*t^4 + 72*t^3 + 84*t^2 - 80*t + 16

-- 
Regards
Minh Van Nguyen

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support-unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to