I would like to determine the Galois group of x^12 + 2x +2 over Q. I
don't know how to read the answer I got from Sage:

sudo ./sage -i database_gap-4.4.9
Installing database_gap-4.4.9
Calling sage-spkg on database_gap-4.4.9
You must set the SAGE_ROOT environment variable or
run this script from the SAGE_ROOT or
SAGE_ROOT/local/bin/ directory.
database_gap-4.4.9
Machine:
Linux jaakko-desktop 2.6.27-11-generic #1 SMP Thu Jan 29 19:24:39 UTC
2009 i686 GNU/Linux
sage: /home/jaakko/sage-3.2.3/database_gap-4.4.9 is already installed
jaa...@jaakko-desktop:~/sage-3.2.3$ ./sage
----------------------------------------------------------------------
| Sage Version 3.2.3, Release Date: 2009-01-05                       |
| Type notebook() for the GUI, and license() for information.        |
----------------------------------------------------------------------
sage: NumberField(x^12+2*x+2, 'a').galois_group()
verbose 0 (501: permgroup_named.py, __init__) Warning: Computing with
TransitiveGroups requires the optional database_gap package. Please
install it.
Galois group Transitive group number 301 of degree 12 of the Number
Field in a with defining polynomial x^12 + 2*x + 2

What does the "Transitive group number 301 of degree 12" means?

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support-unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to