I would like to determine the Galois group of x^12 + 2x +2 over Q. I don't know how to read the answer I got from Sage:
sudo ./sage -i database_gap-4.4.9 Installing database_gap-4.4.9 Calling sage-spkg on database_gap-4.4.9 You must set the SAGE_ROOT environment variable or run this script from the SAGE_ROOT or SAGE_ROOT/local/bin/ directory. database_gap-4.4.9 Machine: Linux jaakko-desktop 2.6.27-11-generic #1 SMP Thu Jan 29 19:24:39 UTC 2009 i686 GNU/Linux sage: /home/jaakko/sage-3.2.3/database_gap-4.4.9 is already installed jaa...@jaakko-desktop:~/sage-3.2.3$ ./sage ---------------------------------------------------------------------- | Sage Version 3.2.3, Release Date: 2009-01-05 | | Type notebook() for the GUI, and license() for information. | ---------------------------------------------------------------------- sage: NumberField(x^12+2*x+2, 'a').galois_group() verbose 0 (501: permgroup_named.py, __init__) Warning: Computing with TransitiveGroups requires the optional database_gap package. Please install it. Galois group Transitive group number 301 of degree 12 of the Number Field in a with defining polynomial x^12 + 2*x + 2 What does the "Transitive group number 301 of degree 12" means? --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---