Dear David,

On 21 Feb., 12:30, davidp <dav...@reed.edu> wrote:
> sage: R = singular.ring(0,'(x,y,z)','dp')
> sage: I = singular.ideal(['x^3-y^2*z','z^2-x*y'])
> sage: I.hilb()
> `sage90`
>
> Could someone please explain this?

Yes. First, let us see how Singular's hilb command works (compare
http://www.singular.uni-kl.de/Manual/latest/sing_212.htm#SEC252 in
Singular's online manual).

Here, I consider a Singular session. If hilb is called without further
argument, nothing is returned, only a few comments are printed:
> ring r = 0,(x,y,z),dp;
> ideal I = x3-y2z,z2-xy;
> hilb(I);
// ** I is no standard basis
//         1 t^0
//        -1 t^2
//        -1 t^3
//         1 t^4

//         1 t^0
//         1 t^1
//        -1 t^3
// dimension (proj.)  = 1
// degree (proj.)   = 1

What you probably want is data for either the first or the second
hilbert series:
> hilb(I,1);
// ** I is no standard basis
1,0,-1,-1,1,0
> hilb(I,2);
// ** I is no standard basis
1,1,0,-1,0

Now, return to Sage, and do as you did:
sage: R = singular.ring(0,'(x,y,z)','dp')
sage: I = singular.ideal(['x^3-y^2*z','z^2-x*y'])

The ideal I is represented by an ideal in a Singular sub-process, and
it gets a name that is automatically chosen:
sage: I.name()
'sage3'
sage: print singular.eval('sage3')
sage3[1]=x^3-y^2*z
sage3[2]=-x*y+z^2

When you say "I.hilb()", then internally the Singular command
  def sage4=hilb(sage3);
is issued. But calling "hilb" without further arguments returns
nothing. So, sage4 is defined, but has no value:
sage: print singular.eval('typeof(sage4)')
none

It is very easy to call the "hilb" function with an additional
argument:
sage: I.hilb(1)
1,
0,
-1,
-1,
1,
0
sage: I.hilb(2)
1,
1,
0,
-1,
0

So, this is the output of the corresponding Singular function.

Best regards
     Simon

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support-unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to