Hi

I've made an interact on elliptic curve point addition, see below.
When I run it in notebook() mode I get an error:

Traceback (click to the left for traceback)
...
AttributeError: 'SymbolicEquation' object has no attribute
'_fast_float_'

It worked in sage 3.1.1. I can't figure out how to fix it. Help is
much appreciated since I want to add this to the wiki and my thesis
presentation.

______________

def point_txt(P,name,rgbcolor):
    if (P.xy()[1]) < 0:
        r = text(name,[float(P.xy()[0]),float(P.xy()
[1])-1],rgbcolor=rgbcolor)
    elif P.xy()[1] == 0:
        r = text(name,[float(P.xy()[0]),float(P.xy()[1])
+1],rgbcolor=rgbcolor)
    else:
        r = text(name,[float(P.xy()[0]),float(P.xy()[1])
+1],rgbcolor=rgbcolor)
    return r

E = EllipticCurve('37a')
list_of_points = E.integral_points()
html("Graphical addition of two points $P$ and $Q$ on the curve $ E:
%s $"%latex(E))
@interact
def _(P=selector(list_of_points,label='Point P'),Q=selector
(list_of_points,label='Point Q'), marked_points = checkbox
(default=True,label = 'Points'), Lines = selector([0..2],nrows=1),
Axes=True):
        curve = plot(E,rgbcolor = (0,0,1),xmin=25,xmax=25)
        #Q = list_of_points[Q]
        #P = list_of_points[P]
        R = P + Q
        Rneg = -R
        #html("$P=(%s:%s:%s)$, $Q=(%s:%s:%s)$\n"%(latex(P[0]),latex(P
[1]),latex(P[2]),latex(Q[0]),latex(Q[1]),latex(Q[2])))
        #html("Graphical addition of points $P$ and $Q$ \non the curve $ E:
%s $ \n\n$P + Q = (%s:%s:%s)$"%(latex(E),latex(R[0]),latex(R[1]),latex
(R[2]))) # $P + Q$ = $%s + %s = %s"%(P,Q,R)
        l1 = line_from_curve_points(E,P,Q)
        l2 = line_from_curve_points(E,R,Rneg,style='--')
        p1 = point(P,rgbcolor=(1,0,0),pointsize=40)
        p2 = plot(Q,rgbcolor=(1,0,0),pointsize=40)
        p3 = plot(R,rgbcolor=(1,0,0),pointsize=40)
        p4 = plot(Rneg,rgbcolor=(1,0,0),pointsize=40)
        textp1 = point_txt(P,"$P$",rgbcolor=(0,0,0))
        textp2 = point_txt(Q,"$Q$",rgbcolor=(0,0,0))
        textp3 = point_txt(R,"$P+Q$",rgbcolor=(0,0,0))
        if Lines==0:
                g=curve
        elif Lines ==1:
                g=curve+l1
        elif Lines == 2:
                g=curve+l1+l2
        if marked_points:
                g=g+p1+p2+p3+p4
        if P != Q:
                g=g+textp1+textp2+textp3
        else:
                g=g+textp1+textp3
        g.axes_range(xmin=-5,xmax=5,ymin=-13,ymax=13)
        show(g,axes = Axes)

def line_from_curve_points(E,P,Q,style='-',rgb=(1,0,0),length=25):
        """
        P,Q two points on an elliptic curve.
        Output is a graphic representation of the straight line intersecting
with P,Q.
        """
        # The function tangent to P=Q on E
        if P == Q:
                if P[2]==0:
                        return 
line([(1,-length),(1,length)],linestyle=style,rgbcolor=rgb)
                else:
                        # Compute slope of the curve E in P
                        l=-(3*P[0]^2 + 2*E.a2()*P[0] + E.a4() - 
E.a1()*P[1])/((-2)*P[1] -
E.a1()*P[0] - E.a3())
                        f(x) = l * (x - P[0]) + P[1]
                        return 
plot(f(x),-length,length,linestyle=style,rgbcolor=rgb)
        # Trivial case of P != R where P=O or R=O then we get the vertical
line from the other point
        elif P[2] == 0:
                return line([(Q[0],-length),(Q
[0],length)],linestyle=style,rgbcolor=rgb)
        elif Q[2] == 0:
                return line([(P[0],-length),(P
[0],length)],linestyle=style,rgbcolor=rgb)
        # Non trivial case where P != R
        else:
                # Case where x_1 = x_2 return vertical line evaluated in Q
                if P[0] == Q[0]:
                        return line([(P[0],-length),(P
[0],length)],linestyle=style,rgbcolor=rgb)

                #Case where x_1 != x_2 return line trough P,R evaluated in Q"
                l=(Q[1]-P[1])/(Q[0]-P[0])
                f(x) = l * (x - P[0]) + P[1]
                return plot(f(x),-length,length,linestyle=style,rgbcolor=rgb)




--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support-unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to