Hi all,

by general theory I know that an invertible transformation matrix P
exists such that A = ~P*J*P where J is the Jordan Normal Form of a
square matrix A. When I try to calculate P, some strange things
happen..

M=MatrixSpace(GF(2),7)
A=M.random_element()
f=A.charpoly()
d = lcm([p.degree() for p,e in f.factor()])
J,P=A.jordan_form(GF(2^d,'b'),transformation=True)      # in general,
A's e.values will live in an extension field

In some instances I get an error message like:

ValueError: cannot compute the basis of the Jordan block of size 6
with eigenvalue 0

(nothing special about the e.value 0 here) and in other instances I
get no error messages but the matrix P is singular!

Can anyone see what the problem is here?
Thanks.
--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support-unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to