Hi all, by general theory I know that an invertible transformation matrix P exists such that A = ~P*J*P where J is the Jordan Normal Form of a square matrix A. When I try to calculate P, some strange things happen..
M=MatrixSpace(GF(2),7) A=M.random_element() f=A.charpoly() d = lcm([p.degree() for p,e in f.factor()]) J,P=A.jordan_form(GF(2^d,'b'),transformation=True) # in general, A's e.values will live in an extension field In some instances I get an error message like: ValueError: cannot compute the basis of the Jordan block of size 6 with eigenvalue 0 (nothing special about the e.value 0 here) and in other instances I get no error messages but the matrix P is singular! Can anyone see what the problem is here? Thanks. --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---