Hi, I would like to test if an eigenvalue of a matrix over the rationals is a real number. (or The roots of the characteristic polynomial are all real.) I am using x in RR
Somehow, when x=2i, 'x in RR' produced the following error. Thanks in advance for any assistance! Shing PS : I am using Sage 3.2.1. {{{id=74| E = matrix(QQ,[[0,1],[-4,0]]);E /// [ 0 1] [-4 0] }}} {{{id=72| E.eigenvalues() /// [2*I, -2*I] }}} {{{id=76| type(E.eigenvalues()[0]) /// <class 'sage.rings.qqbar.AlgebraicNumber'> }}} {{{id=73| E.eigenvalues()[0] in RR /// Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/matmsh/.sage/sage_notebook/worksheets/admin/128/code/ 211.py", line 7, in <module> exec compile(ur'E.eigenvalues()[_sage_const_0 ] in RR' + '\n', '', 'single') File "/usr/local/lib/sage-3.2.1/local/lib/python2.5/site-packages/ SQLAlchemy-0.4.6-py2.5.egg/", line 1, in <module> File "parent.pyx", line 324, in sage.structure.parent.Parent.__contains__ (sage/structure/parent.c: 3925) File "parent.pyx", line 284, in sage.structure.parent.Parent.__call__ (sage/structure/parent.c:3709) File "coerce_maps.pyx", line 146, in sage.structure.coerce_maps.NamedConvertMap._call_ (sage/structure/ coerce_maps.c:3589) File "/usr/local/lib/sage-3.2.1/local/lib/python2.5/site-packages/ sage/rings/qqbar.py", line 2725, in _mpfr_ return AA(self)._mpfr_(field) File "/usr/local/lib/sage-3.2.1/local/lib/python2.5/site-packages/ sage/rings/qqbar.py", line 499, in __call__ raise ValueError, "Cannot coerce algebraic number with non-zero imaginary part to algebraic real" ValueError: Cannot coerce algebraic number with non-zero imaginary part to algebraic real }}} --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---