One way to do it (for a 10x10):

sage: n = 10
sage: M = Matrix(n,n,[[1/(i+j) for i in range(1,11)] for j in range(1,11)])
sage: M

[ 1/2  1/3  1/4  1/5  1/6  1/7  1/8  1/9 1/10 1/11]
[ 1/3  1/4  1/5  1/6  1/7  1/8  1/9 1/10 1/11 1/12]
[ 1/4  1/5  1/6  1/7  1/8  1/9 1/10 1/11 1/12 1/13]
[ 1/5  1/6  1/7  1/8  1/9 1/10 1/11 1/12 1/13 1/14]
[ 1/6  1/7  1/8  1/9 1/10 1/11 1/12 1/13 1/14 1/15]
[ 1/7  1/8  1/9 1/10 1/11 1/12 1/13 1/14 1/15 1/16]
[ 1/8  1/9 1/10 1/11 1/12 1/13 1/14 1/15 1/16 1/17]
[ 1/9 1/10 1/11 1/12 1/13 1/14 1/15 1/16 1/17 1/18]
[1/10 1/11 1/12 1/13 1/14 1/15 1/16 1/17 1/18 1/19]
[1/11 1/12 1/13 1/14 1/15 1/16 1/17 1/18 1/19 1/20]



On Wed, Dec 10, 2008 at 5:19 PM, Alasdair <[EMAIL PROTECTED]> wrote:
>
> The title pretty much says it all - for example, how would I create a
> 4x4 matrix whose (i,j)-th element is 1/(i+j)?
>
> Thanks,
> Alasdair
>
> >
>

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to