On Thursday 25 September 2008, vpv wrote: > sage: B.<x0,x1,x2> = BooleanPolynomialRing(3) > sage: f1 = x0*x1 + x2 > sage: f2 = x1*x2 > sage: f3 = x0*x1*x2 + x0*x2 > sage: I = ideal(f1,f2,f3)
If you compute the Gröbner basis: sage: I.groebner_basis() [x0*x1, x2] You'll see that all elements of the form f = sum p_i*x0*x1 + sum q_i*x2 for p_i and q_i polynomials in B are in I. Cheers, Martin -- name: Martin Albrecht _pgp: http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x8EF0DC99 _www: http://www.informatik.uni-bremen.de/~malb _jab: [EMAIL PROTECTED] --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---