On Thursday 25 September 2008, vpv wrote:
> sage: B.<x0,x1,x2> = BooleanPolynomialRing(3)
> sage: f1 = x0*x1 + x2
> sage: f2 = x1*x2
> sage: f3 = x0*x1*x2 + x0*x2
> sage: I = ideal(f1,f2,f3)

If you compute the Gröbner basis:

sage: I.groebner_basis()
[x0*x1, x2]

You'll see that all elements of the form 

f =  sum p_i*x0*x1 + sum q_i*x2  for p_i and q_i polynomials in B 

are in I.

Cheers,
Martin

-- 
name: Martin Albrecht
_pgp: http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x8EF0DC99
_www: http://www.informatik.uni-bremen.de/~malb
_jab: [EMAIL PROTECTED]


--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to