Huh. Whomever looks at this issue should note that there are now two distinct problems raised in this thread: the original issue regarding why f.integral(9,16) below remains unevaluated, and tDavid's question of why the two answers are different.
On Jun 21, 9:01 am, "David Joyner" <[EMAIL PROTECTED]> wrote: > Unless 24.9... = -24.9..., there seems to be a bug: > > sage: f = sqrt(25-x)*sqrt(1+1/(4*(25-x))) > sage: f.integral(x,9,16) > integrate(sqrt(1/(4*(25 - x)) + 1)*sqrt(25 - x), x, 9, 16) > sage: f.nintegral(x,9,16) > (24.9153783348643, 2.7661626694613149e-13, 21, 0) > sage: g = f.simplify_radical() > sage: g.integral(x,9,16) > I*(65*sqrt(65)*I/6 - 37*sqrt(37)*I/6)/2 > sage: ans = g.integral(x,9,16) > sage: ans.real() > (37*sqrt(37)/6 - 65*sqrt(65)/6)/2 > sage: RR(ans.real()) > -24.9153783348643 > > On Sat, Jun 21, 2008 at 8:51 AM, Roger <[EMAIL PROTECTED]> wrote: > > > Can someone explain why sage (or perhaps maxima, I don't know) manages > > to evaluate the indefinite integral below, but fails to give a numeric > > answer to the definite integral? Seems odd to me. (version 3.02 > > running on Mac OS X) > > > sage: var('x') > > x > > sage: integral(sqrt(25-x)*sqrt(1+1/(4*(25-x))),x) > > sqrt(4*x - 101)*(4*I*x - 101*I)/12 > > sage: integral(sqrt(25-x)*sqrt(1+1/(4*(25-x))),x,9,16) > > integrate(sqrt(1/(4*(25 - x)) + 1)*sqrt(25 - x), x, 9, 16) > > > Thanks, > > Roger --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---