For some reason, there is no covering morphism available for the quotient ring QQ[X]/(X^2). But when I take the polynomial ring in two variables, everything is fine:
sage: R.<X> = PolynomialRing(QQ) sage: S = R.quo(X^2) sage: S Univariate Quotient Polynomial Ring in Xbar over Rational Field with modulus X^2 sage: S.co (I pressed TAB here) S.coerce_map_from S.coerce_map_from_impl S.construction sage: S.co And now: sage: R.<X,Y> = PolynomialRing(QQ) sage: S = R.quo(X^2) sage: S Quotient of Multivariate Polynomial Ring in X, Y over Rational Field by the ideal (X^2) sage: p = S.cover() sage: p(X)*p(X) 0 sage: So, in two variables, everything is fine! My SAGE version is: sage: version() 'SAGE Version 3.0, Release Date: 2008-04-21' --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---