Hello all, I've been trying to use SAGE to find the positive infinity limit of this function:
f(x) = ln(x^x) / ln(x!) However, if I try defining it in SAGE like this: f(x) = ln(x^x) / ln(factorial(x)) I get the following error message: --------------------------------------------------------------------------- <type 'exceptions.TypeError'> Traceback (most recent call last) /Users/erios/<ipython console> in <module>() /Applications/SAGE/local/lib/python2.5/site-packages/sage/rings/arith.py in factorial(n, algorithm) 273 Z = integer_ring.ZZ 274 if algorithm == 'gmp': --> 275 return Z(n).factorial() 276 elif algorithm == 'pari': 277 return Z(pari('%s!'%Z(n))) /Users/erios/integer_ring.pyx in sage.rings.integer_ring.IntegerRing_class.__call__() <type 'exceptions.TypeError'>: unable to convert x (=x) to an integer I have tried several variations of the above code, including alternative ways to define the function, but they all stumble, one way or the other, in an apparent inability of SAGE to convert a SymbolicVariable into an Integer. Is there some way to corner SAGE into converting a SymbolicVariable into an Integer, or to avoid having to – perhaps with a symbolic-calculus-friendly factorial function? -- Ja ne, Helio Perroni Filho Memory Leak http://xperroni.blogspot.com --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---