Hi,

one of my colleagues discovered a limitation of SAGE: apparently one cannot
compute over multivariate ideals over GF(p) for p >= 2^31:

sage: R.<x,y> = PolynomialRing(GF(2147483659))
sage: ideal([x^3-2*y^2,3*x+y^4]).groebner_basis()
...
<type 'exceptions.TypeError'>: Singular error:
   ? `2147483659` greater than 2147483647(max. integer representation)
   ? error occurred in STDIN line 10: `ring sage4=2147483659,(x, y),dp;`
   ? expected ring-expression. type 'help ring;'

An alternative to SAGE is to use Magma:

> R<x,y> := PolynomialRing(GF(2147483659),2);
> GroebnerBasis(Ideal([x^3-2*y^2,3*x+y^4]));
[
    x + 1431655773*y^4,
    y^12 + 54*y^2
]

or even Maple:

> Groebner[Basis]([x^3-2*y^2,3*x+y^4], plex(x,y), characteristic=2147483659);
                         12       2                  4
                       [y   + 54 y , x + 1431655773 y ]

Is there a workaround? If no, are there plans to remove that limitation?

Regards,
Paul


--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to