Hi, one of my colleagues discovered a limitation of SAGE: apparently one cannot compute over multivariate ideals over GF(p) for p >= 2^31:
sage: R.<x,y> = PolynomialRing(GF(2147483659)) sage: ideal([x^3-2*y^2,3*x+y^4]).groebner_basis() ... <type 'exceptions.TypeError'>: Singular error: ? `2147483659` greater than 2147483647(max. integer representation) ? error occurred in STDIN line 10: `ring sage4=2147483659,(x, y),dp;` ? expected ring-expression. type 'help ring;' An alternative to SAGE is to use Magma: > R<x,y> := PolynomialRing(GF(2147483659),2); > GroebnerBasis(Ideal([x^3-2*y^2,3*x+y^4])); [ x + 1431655773*y^4, y^12 + 54*y^2 ] or even Maple: > Groebner[Basis]([x^3-2*y^2,3*x+y^4], plex(x,y), characteristic=2147483659); 12 2 4 [y + 54 y , x + 1431655773 y ] Is there a workaround? If no, are there plans to remove that limitation? Regards, Paul --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---