On Nov 15, 2007 7:07 PM, Joseph North <[EMAIL PROTECTED]> wrote:
>    I just installed SAGE 2.8.12 under Red Hat Linux Fedora 7 on an
> AMD Athlon 64 X2 Dual-Core Processor 5600+ based PC.
>    It took just over 1 hour of real time to install.
>    I need mannnny more than 15 digits of decimal precision for, e.g.,
>
> sage: 1.0/7
> 0.142857142857143
>
>    So, how might I accomplish this goal, please?  Let's start with a 1000
> decimal digits of floating-point precision!

sage: n(1/7, digits=1000)
0.142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857143

or alternatively,

sage: RealField(1000*log(10,2))(1/7)
0.142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857143

The log(10,2) is needed, since RealField(k) produces the real field
with k *bits* of precision, not
decimal digits.

>    Nota Bene:
>
> sage: ComplexField(200) (pi)
> 3.1415926535897932384626433832795028841971693993751058209749
> sage: ComplexField(200) (1.0/7)
> 0.14285714285714284921269268124888185411691665649414062500000
>
> What went wrong for "(1.0/7)", please?!

Use 1/7 instead of 1.0/7:

sage: ComplexField(200)(1/7)
0.14285714285714285714285714285714285714285714285714285714286

>    I would suggest, SAGE: Software for Algebraic and Geometric 
> Experimentation,
> for, nouns are NOT adjectives, I believe!

We have decided that "Sage" is no longer viewed as an acronym but just
a word that refers to the software.

>    Thank you; merci!

You're very welcome.

William

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://sage.math.washington.edu/sage/ and http://sage.scipy.org/sage/
-~----------~----~----~----~------~----~------~--~---

Reply via email to