On Nov 15, 2007 7:07 PM, Joseph North <[EMAIL PROTECTED]> wrote: > I just installed SAGE 2.8.12 under Red Hat Linux Fedora 7 on an > AMD Athlon 64 X2 Dual-Core Processor 5600+ based PC. > It took just over 1 hour of real time to install. > I need mannnny more than 15 digits of decimal precision for, e.g., > > sage: 1.0/7 > 0.142857142857143 > > So, how might I accomplish this goal, please? Let's start with a 1000 > decimal digits of floating-point precision!
sage: n(1/7, digits=1000) 0.142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857143 or alternatively, sage: RealField(1000*log(10,2))(1/7) 0.142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857143 The log(10,2) is needed, since RealField(k) produces the real field with k *bits* of precision, not decimal digits. > Nota Bene: > > sage: ComplexField(200) (pi) > 3.1415926535897932384626433832795028841971693993751058209749 > sage: ComplexField(200) (1.0/7) > 0.14285714285714284921269268124888185411691665649414062500000 > > What went wrong for "(1.0/7)", please?! Use 1/7 instead of 1.0/7: sage: ComplexField(200)(1/7) 0.14285714285714285714285714285714285714285714285714285714286 > I would suggest, SAGE: Software for Algebraic and Geometric > Experimentation, > for, nouns are NOT adjectives, I believe! We have decided that "Sage" is no longer viewed as an acronym but just a word that refers to the software. > Thank you; merci! You're very welcome. William --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://sage.math.washington.edu/sage/ and http://sage.scipy.org/sage/ -~----------~----~----~----~------~----~------~--~---